Data Science using R & Python offline tutorial

Data science, Machine Learning and Artificial intelligence market is on boom.
Data science is basically converting structured or unstructured data in to insight, understanding and knowledge using scientific methods, processes and algorithms.

R and Python are most common programming languages used in Data Science.

R is free open source language used as statistical and visualization software. It can deal with structured (organised) and semi-structured (semi-organised) data.

To learn R for data science we covered all aspects as follows:

✤ Introduction
✤ Data-Types in R
✤ Variables in R
✤ Operators in R
✤ Conditional Statements
✤ Loop statements
✤ Loop Control Statements
✤ R Script
✤ R Functions
✤ Custom Function
✤ Data Structures
• Atomic vectors
• Matrix
• Arrays
• Factors
• Data Frames
• List
✤ Import/Export Data – Assign values to data structure
✤ Data Manipulation/Transformation
✤ Apply function of Base R
✤ dplyr Package

For Python we covered following -
✤Environment setup and Essentials of Python
• Introduction and Environment Setup
• Variable assignment in Python
• Data Types in Python
• Data Structure: Tuple
• Data Structure: List
• Data Structure: Dictionary (Dict)
• Data Structure: Set
• Basic Operator: in
• Basic Operator: + (plus)
• Basic Operator: * (multiply)
• Functions
• Built-in Sequence Function in Python
• Control Flow Statements: if, elif, else
• Control Flow Statements: for Loops
• Control Flow Statements: while Loops
• Exception Handling

✤Mathematical Computation with NumPy in Python
• Types of Arrays
• Attributes of ndarray
• Basic Operations
• Accessing Array Element
• Copy and Views
• Universal Functions (ufunc)
• Shape Manipulation
• Broadcasting
• Linear Algebra

✤Data Manipulation with Pandas
• Why Pandas ?
• Data Structures
• Series – Creation
• Series – Access Element
• Series – Vectorizing operations
• DataFrame – Creation
• Viewing DataFrame
• Handling Missing Values
• Data Operations with Functions
• Statistical Functions for Data Operations
• Data Operation with GroupBy
• Data Operation: Sorting
• Data Operation: Merge, Duplicate, Concatenation
• SQL Operation in Pandas

Statistics is crucial part to start learning in in this field.
Terms used in statistics is very strange and hard to understand for beginners, so we tried our best to explain these terms in very easy language for Novice, Intermediate or Advanced level guys in Data Science, Machine Learning, AI field.
Here we covered so many terms used in statistics like -
• Hypotheses
• Quantitative methods
• Qualitative methods
• Independent and Dependent variables
• Predictor and Outcome variables
• Categorical variables
• Binary variable
• Nominal variable
• Ordinal variable
• Continuous variable
• Interval variable
• Ratio variable
• Discrete variable
• Confounding variables
• Measurement error
• Validity and Reliability
• Two methods of data collection
• Types of variation
• Unsystematic variation
• Systematic variation
• Frequency distribution
• Mean
• Median
• Mode
• Dispersion in distribution of Data
• Range
• Interquartile range
• Quartiles
• Probability
• Standard deviation

Most important advantage of this app that complete material except sample project is available offline, sample project part is online because we keep adding it web based regular.
Read more
Collapse
5.0
9 total
5
4
3
2
1
Loading...

What's New

Do coding on mobile - online compiler for R and Python
Internet permission required to open online compiler if you want to do coding in mobile
Read more
Collapse

Additional Information

Eligible for Family Library
Eligible if bought after 7/2/2016. Learn More
Updated
February 13, 2020
Size
2.7M
Installs
100+
Current Version
1.7-paid
Requires Android
4.1 and up
Content Rating
Everyone
Permissions
Offered By
Concept Apps World
Developer
2/490, Malviya Nagar, Jaipur, Rajasthan, India
©2020 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.