Ebooks
This book introduces mathematicians to the fascinating mathematical interplay between ideas from stochastics and information theory and practical issues in studying complex multiscale nonlinear systems. It emphasizes the serendipity between modern applied mathematics and applications where rigorous analysis, the development of qualitative and/or asymptotic models, and numerical modeling all interact to explain complex phenomena. After a brief introduction to the emerging issues in multiscale modeling, the book has three main chapters. The first chapter is an introduction to information theory with novel applications to statistical mechanics, predictability, and Jupiter's Red Spot for geophysical flows. The second chapter discusses new mathematical issues regarding fluctuation-dissipation theorems for complex nonlinear systems including information flow, various approximations, and illustrates applications to various mathematical models. The third chapter discusses stochastic modeling of complex nonlinear systems. After a general discussion, a new elementary model, motivated by issues in climate dynamics, is utilized to develop a self-contained example of stochastic mode reduction. Based on A. Majda's Aisenstadt lectures at the University of Montreal, the book is appropriate for both pure and applied mathematics graduate students, postdocs and faculty, as well as interested researchers in other scientific disciplines. No background in geophysical flows is required. About the authors: Andrew Majda is a member of the National Academy of Sciences and has received numerous honors and awards, including the National Academy of Science Prize in Applied Mathematics, the John von Neumann Prize of the Society of Industrial and Applied Mathematics, the Gibbs Prize of the American Mathematical Society, and the Medal of the College de France. In the past several years at the Courant Institute, Majda and a multi-disciplinary faculty have created the Center for Atmosphere Ocean Science to promote cross-disciplinary research with modern applied mathematics in climate modeling and prediction. R.V. Abramov is a young researcher; he received his PhD in 2002. M. J. Grote received his Ph.D. under Joseph B. Keller at Stanford University in 1995.
This IMA Volume in Mathematics and its Applications COMPUTATIONAL FLUID DYNAMICS AND REACTING GAS FLOWS is in part the proceedings of a workshop which was an integral part of the 1986-87 IMA program on SCIENTIFIC COMPUTATION. We are grateful to the Scientific Committee: Bjorn Engquist (Chairman), Roland Glowinski, Mitchell Luskin and Andrew Majda for planning and implementing an exciting and stimulating year-long program. We especially thank the Workshop Organizers, Bjorn Engquist, Mitchell Luskin and Andrew Majda, for organizing a workshop which brought together many of the leading researchers in the area of computational fluid dynamics. George R. Sell Hans Weinberger PREFACE Computational fluid dynamics has always been of central importance in scientific computing. It is also a field which clearly displays the essential theme of interaction between mathematics, physics, and computer science. Therefore, it was natural for the first workshop of the 1986- 87 program on scientific computing at the Institute for Mathematics and Its Applications to concentrate on computational fluid dynamics. In the workshop, more traditional fields were mixed with fields of emerging importance such as reacting gas flows and non-Newtonian flows. The workshop was marked by a high level of interaction and discussion among researchers representing varied "schools of thought" and countries.
The general area of geophysical fluid mechanics is truly interdisciplinary. Now ideas from statistical physics are being applied in novel ways to inhomogeneous complex systems such as atmospheres and oceans. In this book, the basic ideas of geophysics, probability theory, information theory, nonlinear dynamics and equilibrium statistical mechanics are introduced and applied to large time-selective decay, the effect of large scale forcing, nonlinear stability, fluid flow on a sphere and Jupiter's Great Red Spot. The book is the first to adopt this approach and it contains many recent ideas and results. Its audience ranges from graduate students and researchers in both applied mathematics and the geophysical sciences. It illustrates the richness of the interplay of mathematical analysis, qualitative models and numerical simulations which combine in the emerging area of computational science.
Written by a leading specialist in the area of atmosphere/ocean science (AOS), the book presents an excellent introduction to this important topic. The goals of these lecture notes, based on courses presented by the author at the Courant Institute of Mathematical Sciences, are to introduce mathematicians to the fascinating and important area of atmosphere/ocean science (AOS) and, conversely, to develop a mathematical viewpoint on basic topics in AOS of interest to the disciplinary AOS community, ranging from graduate students to researchers. The lecture notes emphasize the serendipitous connections between applied mathematics and geophysical flows in the style of modern applied mathematics, where rigorous mathematical analysis as well as asymptotic, qualitative, and numerical modeling all interact to ease the understanding of physical phenomena. Reading these lecture notes does not require a previous course in fluid dynamics, although a serious reader should supplement these notes with material such The book is intended for graduate students and researchers working in interdisciplinary areas between mathematics and AOS. It is excellent for supplementary course reading or independent study.