Around 1900, physicists started to discover particles like electrons, protons, and neutrons, and with these discoveries believed they could predict the internal behavior of the atom. However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how lasers transmit information across the Internet, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application continues to be fundamental in the investigation of the most expansive questions related to our world and the universe. However, while the field and principles of quantum physics are known to have nearly limitless applications, the fundamental reasons why this is the case are far less understood. In Quantum Physics: What Everyone Needs to Know, quantum physicist Michael G. Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today's science and beyond. The book tackles questions as broad as the meaning of quantum entanglement and as specific and timely as why governments worldwide are spending billions of dollars developing quantum technology research. Raymer's list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and quantum computing to principles and concepts like "quantum nonlocality" and Heisenberg's uncertainty principle, Quantum Physics: What Everyone Needs to Know is a wide-reaching introduction to a nearly ubiquitous scientific topic.
The technology behind computers, fiber optics, and networks did not originate in the minds of engineers attempting to build an Internet. The Internet is a culmination of intellectual work by thousands of minds spanning hundreds of years. We have built concept upon concept and technology upon technology to arrive at where we are today, in a world constructed of silicon pathways and controlled by silicon processors.

From computers to optical communications, The Silicon Web: Physics for the Internet Age explores the core principles of physics that underlie those technologies that continue to revolutionize our everyday lives. Designed for the nonscientist, this text requires no higher math or prior experience with physics. It starts with an introduction to physics, silicon, and the Internet and then details the basic physics principles at the core of the information technology revolution. A third part examines the quantum era, with in-depth discussion of digital memory and computers. The final part moves onto the Internet era, covering lasers, optical fibers, light amplification, and fiber-optic and wireless communication technologies.

The relation between technology and daily life is so intertwined that it is impossible to fully understand modern human experience without having at least a basic understanding of the concepts and history behind modern technology, which continues to become more prevalent as well as more ubiquitous. Going beyond the technical, the book also looks at ways in which science has changed the course of history. It clarifies common misconceptions while offering insight on the social impacts of science with an emphasis on information technology.

As a pioneering researcher in quantum mechanics of light, author Michael Raymer has made his own significant contributions to contemporary communications technology

Around 1900, physicists started to discover particles like electrons, protons, and neutrons, and with these discoveries believed they could predict the internal behavior of the atom. However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how lasers transmit information across the Internet, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application continues to be fundamental in the investigation of the most expansive questions related to our world and the universe. However, while the field and principles of quantum physics are known to have nearly limitless applications, the fundamental reasons why this is the case are far less understood. In Quantum Physics: What Everyone Needs to Know, quantum physicist Michael G. Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today's science and beyond. The book tackles questions as broad as the meaning of quantum entanglement and as specific and timely as why governments worldwide are spending billions of dollars developing quantum technology research. Raymer's list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and quantum computing to principles and concepts like "quantum nonlocality" and Heisenberg's uncertainty principle, Quantum Physics: What Everyone Needs to Know is a wide-reaching introduction to a nearly ubiquitous scientific topic.
The technology behind computers, fiber optics, and networks did not originate in the minds of engineers attempting to build an Internet. The Internet is a culmination of intellectual work by thousands of minds spanning hundreds of years. We have built concept upon concept and technology upon technology to arrive at where we are today, in a world constructed of silicon pathways and controlled by silicon processors.

From computers to optical communications, The Silicon Web: Physics for the Internet Age explores the core principles of physics that underlie those technologies that continue to revolutionize our everyday lives. Designed for the nonscientist, this text requires no higher math or prior experience with physics. It starts with an introduction to physics, silicon, and the Internet and then details the basic physics principles at the core of the information technology revolution. A third part examines the quantum era, with in-depth discussion of digital memory and computers. The final part moves onto the Internet era, covering lasers, optical fibers, light amplification, and fiber-optic and wireless communication technologies.

The relation between technology and daily life is so intertwined that it is impossible to fully understand modern human experience without having at least a basic understanding of the concepts and history behind modern technology, which continues to become more prevalent as well as more ubiquitous. Going beyond the technical, the book also looks at ways in which science has changed the course of history. It clarifies common misconceptions while offering insight on the social impacts of science with an emphasis on information technology.

As a pioneering researcher in quantum mechanics of light, author Michael Raymer has made his own significant contributions to contemporary communications technology

Around 1900, physicists started to discover particles like electrons, protons, and neutrons, and with these discoveries believed they could predict the internal behavior of the atom. However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how lasers transmit information across the Internet, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application continues to be fundamental in the investigation of the most expansive questions related to our world and the universe. However, while the field and principles of quantum physics are known to have nearly limitless applications, the fundamental reasons why this is the case are far less understood. In Quantum Physics: What Everyone Needs to Know, quantum physicist Michael G. Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today's science and beyond. The book tackles questions as broad as the meaning of quantum entanglement and as specific and timely as why governments worldwide are spending billions of dollars developing quantum technology research. Raymer's list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and quantum computing to pirinciples and concepts like "quantum nonlocality" and Heisenberg's uncertainty principle, Quantum Physics: What Everyone Needs to Know is a wide-reaching introduction to a nearly ubiquitous scientific topic.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.