Ebooks

A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design

This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design. It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect presents the additional challenges associated with the design of adequate and effective ESD protection elements and schemes. A comprehensive list of practical application examples is used to demonstrate the successful combination of both techniques and any potential design trade-offs.

Chapter One looks at analog design discipline, including layout and analog matching and analog layout design practices. Chapter Two discusses analog design with circuits, examining: single transistor amplifiers; multi-transistor amplifiers; active loads and more. The third chapter covers analog design layout (also MOSFET layout), before Chapters Four and Five discuss analog design synthesis. The next chapters introduce the reader to analog-digital mixed signal design synthesis, analog signal pin ESD networks, and analog ESD power clamps. Chapter Nine, the last chapter, covers ESD design in analog applications.

Clearly describes analog design fundamentals (circuit fundamentals) as well as outlining the various ESD implications Covers a large breadth of subjects and technologies, such as CMOS, LDMOS, BCD, SOI, and thick body SOI Establishes an “ESD analog design” discipline that distinguishes itself from the alternative ESD digital design focus Focuses on circuit and circuit design applications Assessible, with the artwork and tutorial style of the ESD book series PowerPoint slides are available for university faculty members

Even in the world of digital circuits, analog and power circuits are two very important but under-addressed topics, especially from the ESD aspect. Dr. Voldman’s new book will serve as an essential and practical guide to the greater IC community. With high practical and academic values this book is a “bible” for professionals, graduate students, device and circuit designers for investigating the physics of ESD and for product designs and testing.

Electrostatic discharge (ESD) failure mechanisms continue to impact semiconductor components and systems as technologies scale from micro- to nano-electronics.

This book studies electrical overstress, ESD, and latchup from a failure analysis and case-study approach. It provides a clear insight into the physics of failure from a generalist perspective, followed by investigation of failure mechanisms in specific technologies, circuits, and systems. The book is unique in covering both the failure mechanism and the practical solutions to fix the problem from either a technology or circuit methodology.

Look inside for extensive coverage on:

failure analysis tools, EOS and ESD failure sources and failure models of semiconductor technology, and how to use failure analysis to design more robust semiconductor components and systems; electro-thermal models and technologies; the state-of-the-art technologies discussed include CMOS, BiCMOS, silicon on insulator (SOI), bipolar technology, high voltage CMOS (HVCMOS), RF CMOS, smart power, gallium arsenide (GaAs), gallium nitride (GaN), magneto-resistive (MR) , giant magneto-resistors (GMR), tunneling magneto-resistor (TMR), devices; micro electro-mechanical (MEM) systems, and photo-masks and reticles; practical methods to use failure analysis for the understanding of ESD circuit operation, temperature analysis, power distribution, ground rule development, internal bus distribution, current path analysis, quality metrics, (connecting the theoretical to the practical analysis); the failure of each key element of a technology from passives, active elements to the circuit, sub-system to package, highlighted by case studies of the elements, circuits and system-on-chip (SOC) in today’s products.

ESD: Failure Mechanisms and Models is a continuation of the author’s series of books on ESD protection. It is an essential reference and a useful insight into the issues that confront modern technology as we enter the Nano-electronic era.

Electrostatic discharge (ESD) continues to impact semiconductor components and systems as technologies scale from micro- to nano-electronics.

This book studies electrical overstress, ESD, and latchup from a whole-chip ESD design synthesis approach. It provides a clear insight into the integration of ESD protection networks from a generalist perspective, followed by examples in specific technologies, circuits, and chips. Uniquely both the semiconductor chip integration issues and floorplanning of ESD networks are covered from a ‘top-down' design approach.

Look inside for extensive coverage on:

integration of cores, power bussing, and signal pins in DRAM, SRAM, CMOS image processing chips, microprocessors, analog products, RF components and how the integration influences ESD design and integration architecturing of mixed voltage, mixed signal, to RF design for ESD analysis floorplanning for peripheral and core I/O designs, and the implications on ESD and latchup guard ring integration for both a ‘bottom-up' and ‘top-down' methodology addressing I/O guard rings, ESD guard rings, I/O to I/O, and I/O to core classification of ESD power clamps and ESD signal pin circuitry, and how to make the correct choice for a given semiconductor chip examples of ESD design for the state-of-the-art technologies discussed, including CMOS, BiCMOS, silicon on insulator (SOI), bipolar technology, high voltage CMOS (HVCMOS), RF CMOS, and smart power practical methods for the understanding of ESD circuit power distribution, ground rule development, internal bus distribution, current path analysis, quality metrics

ESD: Design and Synthesis is a continuation of the author's series of books on ESD protection. It is an essential reference for: ESD, circuit, and semiconductor engineers; design synthesis team leaders; layout design, characterisation, floorplanning, test and reliability engineers; technicians; and groundrule and test site developers in the manufacturing and design of semiconductor chips.

It is also useful for graduate and undergraduate students in electrical engineering, semiconductor sciences, and manufacturing sciences, and on courses involving the design of ESD devices, chips and systems. This book offers a useful insight into the issues that confront modern technology as we enter the nano-electronic era.

With the growth of high-speed telecommunications and wireless technology, it is becoming increasingly important for engineers to understand radio frequency (RF) applications and their sensitivity to electrostatic discharge (ESD) phenomena. This enables the development of ESD design methods for RF technology, leading to increased protection against electrical overstress (EOS) and ESD.

ESD: RF Technology and Circuits:

Presents methods for co-synthesizisng ESD networks for RF applications to achieve improved performance and ESD protection of semiconductor chips; discusses RF ESD design methods of capacitance load transformation, matching network co-synthesis, capacitance shunts, inductive shunts, impedance isolation, load cancellation methods, distributed loads, emitter degeneration, buffering and ballasting; examines ESD protection and design of active and passive elements in RF complementary metal-oxide-semiconductor (CMOS), RF laterally-diffused metal oxide semiconductor (LDMOS), RF BiCMOS Silicon Germanium (SiGe), RF BiCMOS Silicon Germanium Carbon (SiGeC), and Gallim Arsenide technology; gives information on RF ESD testing methodologies, RF degradation effects, and failure mechanisms for devices, circuits and systems; highlights RF ESD mixed-signal design integration of digital, analog and RF circuitry; sets out examples of RF ESD design computer aided design methodologies; covers state-of-the-art RF ESD input circuits, as well as voltage-triggered to RC-triggered ESD power clamps networks in RF technologies, as well as off-chip protection concepts.

Following the authors series of books on ESD, this book will be a thorough overview of ESD in RF technology for RF semiconductor chip and ESD engineers. Device and circuit engineers working in the RF domain, and quality, reliability and failure analysis engineers will also find it a valuable reference in the rapidly growing are of RF ESD design. In addition, it will appeal to graduate students in RF microwave technology and RF circuit design.

Interest in latchup is being renewed with the evolution of complimentary metal-oxide semiconductor (CMOS) technology, metal-oxide-semiconductor field-effect transistor (MOSFET) scaling, and high-level system-on-chip (SOC) integration.

Clear methodologies that grant protection from latchup, with insight into the physics, technology and circuit issues involved, are in increasing demand.

This book describes CMOS and BiCMOS semiconductor technology and their sensitivity to present day latchup phenomena, from basic over-voltage and over-current conditions, single event latchup (SEL) and cable discharge events (CDE), to latchup domino phenomena. It contains chapters focusing on bipolar physics, latchup theory, latchup and guard ring characterization structures, characterization testing, product level test systems, product level testing and experimental results. Discussions on state-of-the-art semiconductor processes, design layout, and circuit level and system level latchup solutions are also included, as well as:

latchup semiconductor process solutions for both CMOS to BiCMOS, such as shallow trench, deep trench, retrograde wells, connecting implants, sub-collectors, heavily-doped buried layers, and buried grids – from single- to triple-well CMOS; practical latchup design methods, automated and bench-level latchup testing methods and techniques, latchup theory of logarithm resistance space, generalized alpha (a) space, beta (b) space, new latchup design methods– connecting the theoretical to the practical analysis, and; examples of latchup computer aided design (CAD) methodologies, from design rule checking (DRC) and logical-to-physical design, to new latchup CAD methodologies that address latchup for internal and external latchup on a local as well as global design level.

Latchup acts as a companion text to the author’s series of books on ESD (electrostatic discharge) protection, serving as an invaluable reference for the professional semiconductor chip and system-level ESD engineer. Semiconductor device, process and circuit designers, and quality, reliability and failure analysis engineers will find it informative on the issues that confront modern CMOS technology. Practitioners in the automotive and aerospace industries will also find it useful. In addition, its academic treatment will appeal to both senior and graduate students with interests in semiconductor process, device physics, computer aided design and design integration.

With the evolution of semiconductor technology and global diversification of the semiconductor business, testing of semiconductor devices to systems for electrostatic discharge (ESD) and electrical overstress (EOS) has increased in importance.

ESD Testing: From Components to Systems updates the reader in the new tests, test models, and techniques in the characterization of semiconductor components for ESD, EOS, and latchup.

Key features:

Provides understanding and knowledge of ESD models and specifications including human body model (HBM), machine model (MM), charged device model (CDM), charged board model (CBM), cable discharge events (CDE), human metal model (HMM), IEC 61000-4-2 and IEC 61000-4-5. Discusses new testing methodologies such as transmission line pulse (TLP), to very fast transmission line pulse (VF-TLP), and future methods of long pulse TLP, to ultra-fast TLP (UF-TLP). Describes both conventional testing and new testing techniques for both chip and system level evaluation. Addresses EOS testing, electromagnetic compatibility (EMC) scanning, to current reconstruction methods. Discusses latchup characterization and testing methodologies for evaluation of semiconductor technology to product testing.

ESD Testing: From Components to Systems is part of the authors’ series of books on electrostatic discharge (ESD) protection; this book will be an invaluable reference for the professional semiconductor chip and system-level ESD and EOS test engineer. Semiconductor device and process development, circuit designers, quality, reliability and failure analysis engineers will also find it an essential reference. In addition, its academic treatment will appeal to both senior and graduate students with interests in semiconductor process, device physics, semiconductor testing and experimental work.

Electrical Overstress (EOS) continues to impact semiconductor manufacturing, semiconductor components and systems as technologies scale from micro- to nano-electronics. This bookteaches the fundamentals of electrical overstress and how to minimize and mitigate EOS failures. The text provides a clear picture of EOS phenomena, EOS origins, EOS sources, EOS physics, EOS failure mechanisms, and EOS on-chip and system design. It provides an illuminating insight into the sources of EOS in manufacturing, integration of on-chip, and system level EOS protection networks, followed by examples in specific technologies, circuits, and chips. The book is unique in covering the EOS manufacturing issues from on-chip design and electronic design automation to factory-level EOS program management in today’s modern world.

Look inside for extensive coverage on:

Fundamentals of electrical overstress, from EOS physics, EOS time scales, safe operating area (SOA), to physical models for EOS phenomena EOS sources in today’s semiconductor manufacturing environment, and EOS program management, handling and EOS auditing processing to avoid EOS failures EOS failures in both semiconductor devices, circuits and system Discussion of how to distinguish between EOS events, and electrostatic discharge (ESD) events (e.g. such as human body model (HBM), charged device model (CDM), cable discharge events (CDM), charged board events (CBE), to system level IEC 61000-4-2 test events) EOS protection on-chip design practices and how they differ from ESD protection networks and solutions Discussion of EOS system level concerns in printed circuit boards (PCB), and manufacturing equipment Examples of EOS issues in state-of-the-art digital, analog and power technologies including CMOS, LDMOS, and BCD EOS design rule checking (DRC), LVS, and ERC electronic design automation (EDA) and how it is distinct from ESD EDA systems EOS testing and qualification techniques, and Practical off-chip ESD protection and system level solutions to provide more robust systems

Electrical Overstress (EOS): Devices, Circuits and Systems is a continuation of the author’s series of books on ESD protection. It is an essential reference and a useful insight into the issues that confront modern technology as we enter the nano-electronic era.

Invention and patents continues to be an important issue in technology and our global economy. Invention and Patenting provides a clear picture of how to be a prolific inventor, to understand patents, and the patent process. It provides an illuminating insight into the writing of invention disclosures to patents from the submission process to final drafts. The book shows how to communicate effectively with patent lawyers and patent examiners, teaching the language of “legalese.”

This book is unique in covering both the early invention process to final patent drafting to provide high quality patents in technologies.

Key features include:

How to become an inventor, how to invent, to what is invention; How to write an invention disclosure to writing a patent; Examples of utility, design, and plant patents; How to prepare the background section, brief listing of figures, detailed description of the invention, claims, abstract to artwork; Using patent search engines; Writing independent and dependent claims; Analyzing office actions of the US and European patent offices; How to write an office action response and amending claims; and, Examples of Office Action responses, preliminary amendments, to notice of allowance response;

Invention and Patenting is the first book by an engineer and inventor from a technologist’s point of view. It is an essential reference for engineers and inventors. It is also useful for graduate and undergraduate students in technology and the sciences.

Electrostatic discharge (ESD) continues to impact semiconductor manufacturing, semiconductor components and systems, as technologies scale from micro- to nano electronics. This book introduces the fundamentals of ESD, electrical overstress (EOS), electromagnetic interference (EMI), electromagnetic compatibility (EMC), and latchup, as well as provides a coherent overview of the semiconductor manufacturing environment and the final system assembly. It provides an illuminating look into the integration of ESD protection networks followed by examples in specific technologies, circuits, and chips.

The text is unique in covering semiconductor chip manufacturing issues, ESD semiconductor chip design, and system problems confronted today as well as the future of ESD phenomena and nano-technology.

Look inside for extensive coverage on:

The fundamentals of electrostatics, triboelectric charging, and how they relate to present day manufacturing environments of micro-electronics to nano-technology Semiconductor manufacturing handling and auditing processing to avoid ESD failures ESD, EOS, EMI, EMC, and latchup semiconductor component and system level testing to demonstrate product resilience from human body model (HBM), transmission line pulse (TLP), charged device model (CDM), human metal model (HMM), cable discharge events (CDE), to system level IEC 61000-4-2 tests ESD on-chip design and process manufacturing practices and solutions to improve ESD semiconductor chip solutions, also practical off-chip ESD protection and system level solutions to provide more robust systems System level concerns in servers, laptops, disk drives, cell phones, digital cameras, hand held devices, automobiles, and space applications Examples of ESD design for state-of-the-art technologies, including CMOS, BiCMOS, SOI, bipolar technology, high voltage CMOS (HVCMOS), RF CMOS, smart power, magnetic recording technology, micro-machines (MEMs) to nano-structures

ESD Basics: From Semiconductor Manufacturing to Product Use complements the author’s series of books on ESD protection. For those new to the field, it is an essential reference and a useful insight into the issues that confront modern technology as we enter the Nano-electronic Era.

A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design

This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design. It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect presents the additional challenges associated with the design of adequate and effective ESD protection elements and schemes. A comprehensive list of practical application examples is used to demonstrate the successful combination of both techniques and any potential design trade-offs.

Chapter One looks at analog design discipline, including layout and analog matching and analog layout design practices. Chapter Two discusses analog design with circuits, examining: single transistor amplifiers; multi-transistor amplifiers; active loads and more. The third chapter covers analog design layout (also MOSFET layout), before Chapters Four and Five discuss analog design synthesis. The next chapters introduce the reader to analog-digital mixed signal design synthesis, analog signal pin ESD networks, and analog ESD power clamps. Chapter Nine, the last chapter, covers ESD design in analog applications.

Clearly describes analog design fundamentals (circuit fundamentals) as well as outlining the various ESD implications Covers a large breadth of subjects and technologies, such as CMOS, LDMOS, BCD, SOI, and thick body SOI Establishes an “ESD analog design” discipline that distinguishes itself from the alternative ESD digital design focus Focuses on circuit and circuit design applications Assessible, with the artwork and tutorial style of the ESD book series PowerPoint slides are available for university faculty members

Even in the world of digital circuits, analog and power circuits are two very important but under-addressed topics, especially from the ESD aspect. Dr. Voldman’s new book will serve as an essential and practical guide to the greater IC community. With high practical and academic values this book is a “bible” for professionals, graduate students, device and circuit designers for investigating the physics of ESD and for product designs and testing.

With the evolution of semiconductor technology and global diversification of the semiconductor business, testing of semiconductor devices to systems for electrostatic discharge (ESD) and electrical overstress (EOS) has increased in importance.

ESD Testing: From Components to Systems updates the reader in the new tests, test models, and techniques in the characterization of semiconductor components for ESD, EOS, and latchup.

Key features:

Provides understanding and knowledge of ESD models and specifications including human body model (HBM), machine model (MM), charged device model (CDM), charged board model (CBM), cable discharge events (CDE), human metal model (HMM), IEC 61000-4-2 and IEC 61000-4-5. Discusses new testing methodologies such as transmission line pulse (TLP), to very fast transmission line pulse (VF-TLP), and future methods of long pulse TLP, to ultra-fast TLP (UF-TLP). Describes both conventional testing and new testing techniques for both chip and system level evaluation. Addresses EOS testing, electromagnetic compatibility (EMC) scanning, to current reconstruction methods. Discusses latchup characterization and testing methodologies for evaluation of semiconductor technology to product testing.

ESD Testing: From Components to Systems is part of the authors’ series of books on electrostatic discharge (ESD) protection; this book will be an invaluable reference for the professional semiconductor chip and system-level ESD and EOS test engineer. Semiconductor device and process development, circuit designers, quality, reliability and failure analysis engineers will also find it an essential reference. In addition, its academic treatment will appeal to both senior and graduate students with interests in semiconductor process, device physics, semiconductor testing and experimental work.

Invention and patents continues to be an important issue in technology and our global economy. Invention and Patenting provides a clear picture of how to be a prolific inventor, to understand patents, and the patent process. It provides an illuminating insight into the writing of invention disclosures to patents from the submission process to final drafts. The book shows how to communicate effectively with patent lawyers and patent examiners, teaching the language of “legalese.”

This book is unique in covering both the early invention process to final patent drafting to provide high quality patents in technologies.

Key features include:

How to become an inventor, how to invent, to what is invention; How to write an invention disclosure to writing a patent; Examples of utility, design, and plant patents; How to prepare the background section, brief listing of figures, detailed description of the invention, claims, abstract to artwork; Using patent search engines; Writing independent and dependent claims; Analyzing office actions of the US and European patent offices; How to write an office action response and amending claims; and, Examples of Office Action responses, preliminary amendments, to notice of allowance response;

Invention and Patenting is the first book by an engineer and inventor from a technologist’s point of view. It is an essential reference for engineers and inventors. It is also useful for graduate and undergraduate students in technology and the sciences.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.