Ebooks

This book contains 104 of the best problems used in the training and testing of the U. S. International Mathematical Olympiad (IMO) team. It is not a collection of very dif?cult, and impenetrable questions. Rather, the book gradually builds students’ number-theoretic skills and techniques. The ?rst chapter provides a comprehensive introduction to number theory and its mathematical structures. This chapter can serve as a textbook for a short course in number theory. This work aims to broaden students’ view of mathematics and better prepare them for possible participation in various mathematical competitions. It provides in-depth enrichment in important areas of number theory by reorganizing and enhancing students’ problem-solving tactics and strategies. The book further stimulates s- dents’ interest for the future study of mathematics. In the United States of America, the selection process leading to participation in the International Mathematical Olympiad (IMO) consists of a series of national contests called the American Mathematics Contest 10 (AMC 10), the American Mathematics Contest 12 (AMC 12), the American Invitational Mathematics - amination (AIME), and the United States of America Mathematical Olympiad (USAMO). Participation in the AIME and the USAMO is by invitation only, based on performance in the preceding exams of the sequence. The Mathematical Olympiad Summer Program (MOSP) is a four-week intensive training program for approximately ?fty very promising students who have risen to the top in the American Mathematics Competitions.
Number theory, an ongoing rich area of mathematical exploration, is noted for its theoretical depth, with connections and applications to other fields from representation theory, to physics, cryptography, and more. While the forefront of number theory is replete with sophisticated and famous open problems, at its foundation are basic, elementary ideas that can stimulate and challenge beginning students. This lively introductory text focuses on a problem-solving approach to the subject.

Key features of Number Theory: Structures, Examples, and Problems:

* A rigorous exposition starts with the natural numbers and the basics.

* Important concepts are presented with an example, which may also emphasize an application. The exposition moves systematically and intuitively to uncover deeper properties.

* Topics include divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, quadratic residues, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems are covered.

* Unique exercises reinforce and motivate the reader, with selected solutions to some of the problems.

* Glossary, bibliography, and comprehensive index round out the text.

Written by distinguished research mathematicians and renowned teachers, this text is a clear, accessible introduction to the subject and a source of fascinating problems and puzzles, from advanced high school students to undergraduates, their instructors, and general readers at all levels.

Rooted in a pedagogically successful problem-solving approach to linear algebra, this work fills a gap in the literature that is sharply divided between, on the one end, elementary texts with only limited exercises and examples, and, at the other extreme, books too advanced in prerequisites and too specialized in focus to appeal to a wide audience. Instead, "Essential Linear Algebra" clearly develops the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality, while simultaneously emphasizing applications and connections to fields such as biology, economics, computer graphics, electrical engineering, cryptography, and political science.

Key features:

* Intertwined discussion of linear algebra and geometry, giving readers a solid understanding of both topics and the relationship between them

* Each section starts with a concise overview of important concepts in results, followed by a selection of fully-solved problems

* Example-driven exposition

* Over 500 problems (roughly half include complete solutions) that are carefully selected for instructive appeal, elegance, and theoretical importance

* Two or more solutions provided to many of the problems; paired solutions range from step-by-step, elementary methods whose purpose is to strengthen basic comprehension to more sophisticated, powerful proofs to challenge advanced readers

* Appendices with review material on complex variables

Ideal as an introduction to linear algebra, the extensive exercises and well-chosen applications also make this text suitable for advanced courses at the junior or senior undergraduate level. Furthermore, it can serve as a colorful supplementary problem book, reference, or self-study manual for professional scientists and mathematicians. Complete with bibliography and index, "Essential Linear Algebra" is a natural bridge between pure and applied mathematics and the natural and social sciences, appropriate for any student or researcher who needs a strong footing in the theory, problem-solving, and model-building that are the subject’s hallmark.

The main goal of the two authors is to help undergraduate students understand the concepts and ideas of combinatorics, an important realm of mathematics, and to enable them to ultimately achieve excellence in this field. This goal is accomplished by familiariz ing students with typical examples illustrating central mathematical facts, and by challenging students with a number of carefully selected problems. It is essential that the student works through the exercises in order to build a bridge between ordinary high school permutation and combination exercises and more sophisticated, intricate, and abstract concepts and problems in undergraduate combinatorics. The extensive discussions of the solutions are a key part of the learning process. The concepts are not stacked at the beginning of each section in a blue box, as in many undergraduate textbooks. Instead, the key mathematical ideas are carefully worked into organized, challenging, and instructive examples. The authors are proud of their strength, their collection of beautiful problems, which they have accumulated through years of work preparing students for the International Math ematics Olympiads and other competitions. A good foundation in combinatorics is provided in the first six chapters of this book. While most of the problems in the first six chapters are real counting problems, it is in chapters seven and eight where readers are introduced to essay-type proofs. This is the place to develop significant problem-solving experience, and to learn when and how to use available skills to complete the proofs.
Questions of maxima and minima have great practical significance, with applications to physics, engineering, and economics; they have also given rise to theoretical advances, notably in calculus and optimization. Indeed, while most texts view the study of extrema within the context of calculus, this carefully constructed problem book takes a uniquely intuitive approach to the subject: it presents hundreds of extreme value problems, examples, and solutions primarily through Euclidean geometry.

Key features and topics:

* Comprehensive selection of problems, including Greek geometry and optics, Newtonian mechanics, isoperimetric problems, and recently solved problems such as Malfatti’s problem

* Unified approach to the subject, with emphasis on geometric, algebraic, analytic, and combinatorial reasoning

* Presentation and application of classical inequalities, including Cauchy--Schwarz and Minkowski’s Inequality; basic results in calculus, such as the Intermediate Value Theorem; and emphasis on simple but useful geometric concepts, including transformations, convexity, and symmetry

* Clear solutions to the problems, often accompanied by figures

* Hundreds of exercises of varying difficulty, from straightforward to Olympiad-caliber

Written by a team of established mathematicians and professors, this work draws on the authors’ experience in the classroom and as Olympiad coaches. By exposing readers to a wealth of creative problem-solving approaches, the text communicates not only geometry but also algebra, calculus, and topology. Ideal for use at the junior and senior undergraduate level, as well as in enrichment programs and Olympiad training for advanced high school students, this book’s breadth and depth will appeal to a wide audience, from secondary school teachers and pupils to graduate students, professional mathematicians, and puzzle enthusiasts.

Putnam and Beyond takes the reader on a journey through the world of college mathematics, focusing on some of the most important concepts and results in the theories of polynomials, linear algebra, real analysis in one and several variables, differential equations, coordinate geometry, trigonometry, elementary number theory, combinatorics, and probability. Using the W.L. Putnam Mathematical Competition for undergraduates as an inspiring symbol to build an appropriate math background for graduate studies in pure or applied mathematics, the reader is eased into transitioning from problem-solving at the high school level to the university and beyond, that is, to mathematical research.

Key features of Putnam and Beyond

* Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants.

* Each chapter systematically presents a single subject within which problems are clustered in every section according to the specific topic.

* The exposition is driven by more than 1100 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors.

* Complete solutions to all problems are given at the end of the book. The source, author, and historical background are cited whenever possible.

This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for self-study by undergraduate and graduate students, as well as teachers and researchers in the physical sciences who wish to to expand their mathematical horizons.

Why Olympiads? Working mathematiciansoftentell us that results in the ?eld are achievedafter long experience and a deep familiarity with mathematical objects, that progress is made slowly and collectively, and that ?ashes of inspiration are mere punctuation in periods of sustained effort. TheOlympiadenvironment,incontrast,demandsarelativelybriefperiodofintense concentration,asksforquickinsightsonspeci?coccasions,andrequiresaconcentrated but isolated effort. Yet we have foundthat participantsin mathematicsOlympiadshave oftengoneontobecome?rst-classmathematiciansorscientistsandhaveattachedgreat signi?cance to their early Olympiad experiences. For many of these people, the Olympiad problem is an introduction, a glimpse into the world of mathematics not afforded by the usual classroom situation. A good Olympiad problem will capture in miniature the process of creating mathematics. It’s all there: the period of immersion in the situation, the quiet examination of possible approaches, the pursuit of various paths to solution. There is the fruitless dead end, as well as the path that ends abruptly but offers new perspectives, leading eventually to the discoveryof a better route. Perhapsmost obviously,grapplingwith a goodproblem provides practice in dealing with the frustration of working at material that refuses to yield. If the solver is lucky, there will be the moment of insight that heralds the start of a successful solution. Like a well-crafted work of ?ction, a good Olympiad problem tells a story of mathematical creativity that captures a good part of the real experience and leaves the participant wanting still more. And this book gives us more.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.