Ebooks
This fourteenth volume in the Poincaré Seminar Series is devoted to Niels Bohr, his foundational contributions to understanding atomic structure and quantum theory and their continuing importance today. This book contains the following chapters: - Tomas Bohr, Keeping Things Open; - Olivier Darrigol, Bohr's Trilogy of 1913; -John Heilbron, The Mind that Created the Bohr Atom; - Serge Haroche & Jean-Michel Raimond, Bohr's Legacy in Cavity QED; - Alain Aspect, From Einstein, Bohr, Schrödinger to Bell and Feynman: a New Quantum Revolution?; - Antoine Browaeys, Interacting Cold Rydberg Atoms: A Toy Many-Body System; - Michel Bitbol & Stefano Osnaghi, Bohr ́s Complementarity and Kant ́s Epistemology. Dating from their origin in lectures to a broad scientific audience these seven chapters are of high educational value.
This volume is of general interest to physicists, mathematicians and historians.
This volume provides a detailed description of the seminal theoretical construction in 1964, independently by Robert Brout and Francois Englert, and by Peter W. Higgs, of a mechanism for short-range fundamental interactions, now called the Brout-Englert-Higgs (BEH) mechanism. It accounts for the non-zero mass of elementary particles and predicts the existence of a new particle - an elementary massive scalar boson. In addition to this the book describes the experimental discovery of this fundamental missing element in the Standard Model of particle physics. The H Boson, also called the Higgs Boson, was produced and detected in the Large Hadron Collider (LHC) of CERN near Geneva by two large experimental collaborations, ATLAS and CMS, which announced its discovery on the 4th of July 2012.This new volume of the Poincaré Seminar Series, The H Boson, corresponds to the nineteenth seminar, held on November 29, 2014, at Institut Henri Poincaré in Paris.
This book is the eighth in a series of Proceedings for the S ́ eminaire Poincar ́ e, which is directed towards a large audience of physicists and of mathematicians. The goal of this seminar is to provide up to date information about general topics of great interest in physics. Both the theoretical and experimental aspects are covered, with some historical background. Inspired by the Bourbaki seminar in mathematics in its organization, hence nicknamed “Bourbaphy”, this Poincar ́ e SeminarisheldattheInstitutHenriPoincar ́ einParis,withcontributionsprepared inadvance.Particularcareisdevotedtothepedagogicalnatureofthepresentation so as to ful?ll the goal of being readable by a large audience of scientists. This new volume of the Poincar ́ e Seminar series “The Spin” corresponds to the eleventh such Seminar, held on December 8, 2007. It describes how this once mysterious quantum reality called spin has become ubiquitous in modern physics from the most theoretical aspects down to the most practical applications of miniaturizing electronic and computer devices or helping medical diagnosis.
This book confirms noncommutative geometry as an increasingly useful tool for the description of intricate condensed matter phenomena. It describes the striking progress recently made in gathering all the interactions and fields of the standard model into a non-commutative geometry on a simple internal space. Coverage also details the very recent technique of renormalization of quantum field theories on non-commutative space-time.
This book is the fourth in a series of lectures of the S ́ eminaire Poincar ́ e,whichis directed towards a large audience of physicists and of mathematicians. The goal of this seminar is to provide up-to-date information about general topics of great interest in physics. Both the theoretical and experimental aspects are covered, with some historical background. Inspired by the Bourbaki seminar in mathematics in its organization, hence nicknamed “Bourbaphi”, the Poincar ́ e Seminar is held twice a year at the Institut Henri Poincar ́ e in Paris, with cont- butions prepared in advance. Particular care is devoted to the pedagogical nature of the presentations so as to ful?ll the goal of being readable by a large audience of scientists. This volume contains the seventh such Seminar, held in 2005. It is devoted to Einstein’s 1905 papers and their legacy. After a presentation of Einstein’s ep- temological approach to physics, and the genesis of special relativity, a cen- nary perspective is o?ered. The geometry of relativistic spacetime is explained in detail. Single photon experiments are presented, as a spectacular realization of Einstein’s light quanta hypothesis. A previously unpublished lecture by Einstein, which presents an illuminating point of view on statistical physics in 1910, at the dawn of quantum mechanics, is reproduced. The volume ends with an essay on the historical, physical and mathematical aspects of Brownian motion. We hopethatthe publicationofthis serieswill servethe community ofphy- cists and mathematicians at the graduate student or professional level.
The International Conference on Theoretical Physics, TH-2002, took place in Paris from July 22 to 27 in the Conference Center of the UNESCO, the United Nations Educational Scientific and Cultural Organization, under aegis of the IUPAP, the International Union of Pure and Applied Physics and of the French and Euro pean Physical Societies, with a large support of several French, European and international Institutions. International and crossdisciplinary, TH-2002 welcomed around 1200 partic ipants representing all domains of modern theoretical physics. The conference offered a high-level scientific program, including 18 plenary lectures, 45 general lectures in thematic sessions and 140 more specialized lectures, partly invited and partly selected among proposals received from participants. Around 500 contribu tions were also presented as posters. Plenary lectures as well as general thematic lectures were addressed to a general audience of theoricians, not only to specialists. According to our commitments towards UNESCO and other sponsoring insti tutions, TH-2002 attributed more than 200 fellowships, mostly to scientists from developing countries and Eastern Europe, covering registration fees and, for more than half of them, stay expenses with student type accomodation. Special highlights of the conference included • the opening ceremony on July 22, with the participation of Mrs Claudie Haignere, French Minister of Research, and M. Walter Erdelen, General Ad joint Director for Sciences at UNESCO. Their opening addresses were espe cially appreciated and are reproduced below. This ceremony preceded the first lecture by Professor Cohen-Tannoudji, Physics Nobel prize winner.
This tenth volume in the Poincaré Seminar Series describes recent developments at one of the most challenging frontiers in statistical physics - the deeply related fields of glassy dynamics, especially near the glass transition, and of the statics and dynamics of granular systems. These fields are marked by a vigorous interchange between experiment, theory, and numerical studies, all of which are well represented by the leading experts who have contributed articles to this volume. These articles are also highly pedagogical, as befits their origin in lectures to a broad scientific audience. Highlights include a Galilean dialogue on the mean field and competing theories of the glass transition, a wide-ranging survey of colloidal glasses, and experimental as well as theoretical treatments of the relatively new field of dense granular flows. This book should be of broad general interest to both physicists and mathematicians.
The Poincari Seminar is held twice a year at the Institut Henri Poincari in Paris. The goal of this seminar is to provide up-to-date information about general topics of great interest in physics. Both the theoretical and experimental results are covered, with some historical background. Particular care is devoted to the pedagogical nature of the presentation. This volume is devoted to the quantum Hall effect. After a historical and general presentation by Nobel prize winner Klaus von Klitzing, discoverer of this effect, the volume proceeds with reviews on the mathematics and physics of both the integer and fractional case. It includes up to date presentations of the tunneling and metrology experiments related to the quantum Hall effect. It will serve the community of physicists and mathematicians at professional or graduate student level.
This thirteenth volume of the Poincaré Seminar Series, Henri Poincaré, 1912-2012, is published on the occasion of the centennial of the death of Henri Poincaré in 1912. It presents a scholarly approach to Poincaré’s genius and creativity in mathematical physics and mathematics. Its five articles are also highly pedagogical, as befits their origin in lectures to a broad scientific audience. Highlights include “Poincaré’s Light” by Olivier Darrigol, a leading historian of science, who uses light as a guiding thread through much of Poincaré ’s physics and philosophy, from the application of his superior mathematical skills and the theory of diffraction to his subsequent reflections on the foundations of electromagnetism and the electrodynamics of moving bodies; the authoritative “Poincaré and the Three-Body Problem” by Alain Chenciner, who offers an exquisitely detailed, hundred-page perspective, peppered with vivid excerpts from citations, on the monumental work of Poincaré on this subject, from the famous (King Oscar’s) 1889 memoir to the foundations of the modern theory of chaos in “Les méthodes nouvelles de la mécanique céleste.” A profoundly original and scholarly presentation of the work by Poincaré on probability theory is given by Laurent Mazliak in “Poincaré’s Odds,” from the incidental first appearance of the word “probability” in Poincaré’s famous 1890 theorem of recurrence for dynamical systems, to his later acceptance of the unavoidability of probability calculus in Science, as developed to a great extent by Emile Borel, Poincaré’s main direct disciple; the article by Francois Béguin, “Henri Poincaré and the Uniformization of Riemann Surfaces,” takes us on a fascinating journey through the six successive versions in twenty-six years of the celebrated uniformization theorem, which exemplifies the Master’s distinctive signature in the foundational fusion of mathematics and physics, on which conformal field theory, string theory and quantum gravity so much depend nowadays; the final chapter, “Harmony and Chaos, On the Figure of Henri Poincaré” by the filmmaker Philippe Worms, describes the homonymous poetical film in which eminent scientists, through mathematical scenes and physical experiments, display their emotional relationship to the often elusive scientific truth and universal “harmony and chaos” in Poincaré’s legacy.
This book will be of broad general interest to physicists, mathematicians, philosophers of science and historians.
This book is the sixth in a series of lectures of the S ́ eminaire Poincar ́ e,whichis directed towards a large audience of physicists and of mathematicians. The goal of this seminar is to provide up-to-date information about general topics of great interest in physics. Both the theoretical and experimental aspects are covered, with some historical background. Inspired by the Bourbaki seminar in mathematics in its organization, hence nicknamed “Bourbaphi”, the Poincar ́ e Seminar is held twice a year at the Institut Henri Poincar ́ e in Paris, with cont- butions prepared in advance. Particular care is devoted to the pedagogical nature of the presentations so as to ful?ll the goal of being readable by a large audience of scientists. This volume contains the ninth such Seminar, held in 2006. It is devoted to Relativity and Experiment. This book starts with a detailed introduction to general relativity by T. Damour. It includes a review of what may lie beyond by string theorist I. - toniadis, and collects up-to-date essays on the experimental tests of this theory. General relativity is now a theory well con?rmed by detailed experiments, incl- ing the precise timing of the double pulsar J0737-3039 explained by M. Kramer, member of the team which discovered it in 2003, and satellite missions such as Gravity Probe B described by J. Mester. The search for detecting gravitational waves is also very much under way as reviewed by J.Y. Vinet. Wehopethatthecontinuedpublicationofthisserieswillservethecommunity of physicists and mathematicians at professional or graduate student level.