Similar
Differential forms are a powerful mathematical technique to help students, researchers, and engineers solve problems in geometry and analysis, and their applications. They both unify and simplify results in concrete settings, and allow them to be clearly and effectively generalized to more abstract settings. Differential Forms has gained high recognition in the mathematical and scientific community as a powerful computational tool in solving research problems and simplifying very abstract problems. Differential Forms, 2nd Edition, is a solid resource for students and professionals needing a general understanding of the mathematical theory and to be able to apply that theory into practice.Provides a solid theoretical basis of how to develop and apply differential forms to real research problemsIncludes computational methods to enable the reader to effectively use differential formsIntroduces theoretical concepts in an accessible manner
The concept of factorization, familiar in the ordinary system of whole numbers that can be written as a unique product of prime numbers, plays a central role in modern mathematics and its applications. This exposition of the classic theory leads the reader to an understanding of the current knowledge of the subject and its connections to other mathematical concepts, for example in algebraic number theory. The book can be used as a text for a first course in number theory or for self-study by motivated high school students or readers interested in modern mathematics.
The Siegel Modular Variety of Degree Two and Level Four is by Ronnie Lee and Steven H. Weintraub: Let $\mathbf M_n$ denote the quotient of the degree two Siegel space by the principal congruence subgroup of level $n$ of $Sp_4(\mathbb Z)$. $\mathbfM_n$ is the moduli space of principally polarized abelian surfaces with a level $n$ structure and has a compactification $\mathbfM^*_n$ first constructed by Igusa. $\mathbfM^*_n$ is an almost non-singular (non-singular for $n> 1$) complex three-dimensional projective variety (of general type, for $n> 3$). The authors analyze the Hodge structure of $\mathbfM^*_4$, completely determining the Hodge numbers $h^{p,q} = \dim H^{p,q}(\mathbfM^*_4)$. Doing so relies on the understanding of $\mathbfM^*_2$ and exploitation of the regular branched covering $\mathbfM^*_4 \rightarrow \mathbfM^*_2$.""Cohomology of the Siegel Modular Group of Degree Two and Level Four"" is by J. William Hoffman and Steven H. Weintraub. The authors compute the cohomology of the principal congruence subgroup $\Gamma_2(4) \subset S{_p4} (\mathbb Z)$ consisting of matrices $\gamma \equiv \mathbf 1$ mod 4. This is done by computing the cohomology of the moduli space $\mathbfM_4$. The mixed Hodge structure on this cohomology is determined, as well as the intersection cohomology of the Satake compactification of $\mathbfM_4$.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. In this book we develop JCF and show how to apply it to solving systems of differential equations. We first develop JCF, including the concepts involved in it-eigenvalues, eigenvectors, and chains of generalized eigenvectors. We begin with the diagonalizable case and then proceed to the general case, but we do not present a complete proof. Indeed, our interest here is not in JCF per se, but in one of its important applications. We devote the bulk of our attention in this book to showing how to apply JCF to solve systems of constant-coefficient first order differential equations, where it is a very effective tool. We cover all situations-homogeneous and inhomogeneous systems; real and complex eigenvalues. We also treat the closely related topic of the matrix exponential. Our discussion is mostly confined to the 2-by-2 and 3-by-3 cases, and we present a wealth of examples that illustrate all the possibilities in these cases (and of course, exercises for the reader). Table of Contents: Jordan Canonical Form / Solving Systems of Linear Differential Equations / Background Results: Bases, Coordinates, and Matrices / Properties of the Complex Exponential
This is a genuine introduction to algebraic geometry. The author makes no assumption that readers know more than can be expected of a good undergraduate. He introduces fundamental concepts in a way that enables students to move on to a more advanced book or course that relies more heavily on commutative algebra. The language is purposefully kept on an elementary level, avoiding sheaf theory and cohomology theory. The introduction of new algebraic concepts is always motivated by a discussion of the corresponding geometric ideas. The main point of the book is to illustrate the interplay between abstract theory and specific examples. The book contains numerous problems that illustrate the general theory.The text is suitable for advanced undergraduates and beginning graduate students. It contains sufficient material for a one-semester course. The reader should be familiar with the basic concepts of modern algebra. A course in one complex variable would be helpful, but is not necessary. It is also an excellent text for those working in neighboring fields (algebraic topology, algebra, Lie groups, etc.) who need to know the basics of algebraic geometry.
This volume contains the Proceedings of the conference "Complex and Differential Geometry 2009", held at Leibniz Universität Hannover, September 14 - 18, 2009. It was the aim of this conference to bring specialists from differential geometry and (complex) algebraic geometry together and to discuss new developments in and the interaction between these fields. Correspondingly, the articles in this book cover a wide area of topics, ranging from topics in (classical) algebraic geometry through complex geometry, including (holomorphic) symplectic and poisson geometry, to differential geometry (with an emphasis on curvature flows) and topology.
'We explore widely in the valley of ordinary representations, and we take the reader over the mountain pass leading to the valley of modular representations, to a point from which (s)he can survey this valley, but we do not attempt to widely explore it. We hope the reader will be sufficiently fascinated by the scenery to further explore both valleys on his/her own' - from the Preface. Representation theory plays important roles in geometry, algebra, analysis, and mathematical physics. In particular, it has been one of the great tools in the study and classification of finite groups. The theory contains some particularly beautiful results: Frobenius' theorem, Burnside's theorem, Artin's theorem, Brauer's theorem - all of which are covered in this textbook. Some seem uninspiring at first but prove to be quite useful. Others are clearly deep from the outset.And when a group (finite or otherwise) acts on something else (as a set of symmetries, for example), one ends up with a natural representation of the group. This book is an introduction to the representation theory of finite groups from an algebraic point of view, regarding representations as modules over the group algebra. The approach is to develop the requisite algebra in reasonable generality and then to specialize it to the case of group representations. Methods and results particular to group representations, such as characters and induced representations, are developed in depth. Arithmetic comes into play when considering the field of definition of a representation, especially for subfields of the complex numbers.The book has an extensive development of the semisimple case, where the characteristic of the field is zero or is prime to the order of the group, and builds the foundations of the modular case, where the characteristic of the field divides the order of the group. The book assumes only the material of a standard graduate course in algebra. It is suitable as a text for a year-long graduate course. The subject is of interest to students of algebra, number theory and algebraic geometry. The systematic treatment presented here makes the book also valuable as a reference.
This collection of surveys present an overview of recent developments in Complex Geometry. Topics range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kähler geometry, and group actions to Hodge theory and characteristic p-geometry.
Written by established experts this book will be a must for mathematicians working in Complex Geometry
Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. In this book we develop JCF and show how to apply it to solving systems of differential equations. We first develop JCF, including the concepts involved in it eigenvalues, eigenvectors, and chains of generalized eigenvectors. We begin with the diagonalizable case and then proceed to the general case, but we do not present a complete proof. Indeed, our interest here is not in JCF per se, but in one of its important applications. We devote the bulk of our attention in this book to showing how to apply JCF to solve systems of constant-coefficient first order differential equations, where it is a very effective tool. We cover all situations homogeneous and inhomogeneous systems; real and complex eigenvalues. We also treat the closely related topic of the matrix exponential. Our discussion is mostly confined to the 2-by-2 and 3-by-3 cases, and we present a wealth of examples that illustrate all the possibilities in these cases (and of course, exercises for the reader). Table of Contents: Jordan Canonical Form / Solving Systems of Linear Differential Equations / Background Results: Bases, Coordinates, and Matrices / Properties of the Complex Exponential
Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V → V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (lESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader.
Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T: V → V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (ℓESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis