## Similar

The basic goal of this book is to introduce the mathematics and application of stochastic equations used for the modeling of complex systems. A first focus is on the introduction to different topics in mathematical analysis. A second focus is on the application of mathematical tools to the analysis of stochastic equations. A third focus is on the development and application of stochastic methods to simulate turbulent flows as seen in reality.

This book is primarily oriented towards mathematics and engineering PhD students, young and experienced researchers, and professionals working in the area of stochastic differential equations and their applications. It contributes to a growing understanding of concepts and terminology used by mathematicians, engineers, and physicists in this relatively young and quickly expanding field.

Jeff Hawkins, the man who created the PalmPilot, Treo smart phone, and other handheld devices, has reshaped our relationship to computers. Now he stands ready to revolutionize both neuroscience and computing in one stroke, with a new understanding of intelligence itself.

Hawkins develops a powerful theory of how the human brain works, explaining why computers are not intelligent and how, based on this new theory, we can finally build intelligent machines.

The brain is not a computer, but a memory system that stores experiences in a way that reflects the true structure of the world, remembering sequences of events and their nested relationships and making predictions based on those memories. It is this memory-prediction system that forms the basis of intelligence, perception, creativity, and even consciousness.

In an engaging style that will captivate audiences from the merely curious to the professional scientist, Hawkins shows how a clear understanding of how the brain works will make it possible for us to build intelligent machines, in silicon, that will exceed our human ability in surprising ways.

Written with acclaimed science writer Sandra Blakeslee, On Intelligence promises to completely transfigure the possibilities of the technology age. It is a landmark book in its scope and clarity.

Whether you are a student struggling to fulfill a math or science requirement, or you are embarking on a career change that requires a new skill set, A Mind for Numbers offers the tools you need to get a better grasp of that intimidating material. Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. She flunked her way through high school math and science courses, before enlisting in the army immediately after graduation. When she saw how her lack of mathematical and technical savvy severely limited her options—both to rise in the military and to explore other careers—she returned to school with a newfound determination to re-tool her brain to master the very subjects that had given her so much trouble throughout her entire life.

In A Mind for Numbers, Dr. Oakley lets us in on the secrets to learning effectively—secrets that even dedicated and successful students wish they’d known earlier. Contrary to popular belief, math requires creative, as well as analytical, thinking. Most people think that there’s only one way to do a problem, when in actuality, there are often a number of different solutions—you just need the creativity to see them. For example, there are more than three hundred different known proofs of the Pythagorean Theorem. In short, studying a problem in a laser-focused way until you reach a solution is not an effective way to learn. Rather, it involves taking the time to step away from a problem and allow the more relaxed and creative part of the brain to take over. The learning strategies in this book apply not only to math and science, but to any subject in which we struggle. We all have what it takes to excel in areas that don't seem to come naturally to us at first, and learning them does not have to be as painful as we might think!

From the Trade Paperback edition.

Artificial Intelligence helps choose what books you buy, what movies you see, and even who you date. It puts the "smart" in your smartphone and soon it will drive your car. It makes most of the trades on Wall Street, and controls vital energy, water, and transportation infrastructure. But Artificial Intelligence can also threaten our existence.

In as little as a decade, AI could match and then surpass human intelligence. Corporations and government agencies are pouring billions into achieving AI's Holy Grail—human-level intelligence. Once AI has attained it, scientists argue, it will have survival drives much like our own. We may be forced to compete with a rival more cunning, more powerful, and more alien than we can imagine.

Through profiles of tech visionaries, industry watchdogs, and groundbreaking AI systems, Our Final Invention explores the perils of the heedless pursuit of advanced AI. Until now, human intelligence has had no rival. Can we coexist with beings whose intelligence dwarfs our own? And will they allow us to?

In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we’ve never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space.

Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man’s journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century’s leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat’s last theorem, that had seemed intractable before.

At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.

Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or mediaMethods of clustering to detect groups of similar items in a large datasetSearch engine features -- crawlers, indexers, query engines, and the PageRank algorithmOptimization algorithms that search millions of possible solutions to a problem and choose the best oneBayesian filtering, used in spam filters for classifying documents based on word types and other featuresUsing decision trees not only to make predictions, but to model the way decisions are madePredicting numerical values rather than classifications to build price modelsSupport vector machines to match people in online dating sitesNon-negative matrix factorization to find the independent features in a datasetEvolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a gameEach chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you.

"Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."

-- Dan Russell, Google

"Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."

-- Tim Wolters, CTO, Collective Intellect

Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Physicist Dave Goldberg speeds across space, time and everything in between showing that our elegant universe—from the Higgs boson to antimatter to the most massive group of galaxies—is shaped by hidden symmetries that have driven all our recent discoveries about the universe and all the ones to come.

Why is the sky dark at night? If there is anti-matter, can there be anti-people? Why are past, present, and future our only options? Saluting the brilliant but unsung female mathematician Emmy Noether as well as other giants of physics, Goldberg answers these questions and more, exuberantly demonstrating that symmetry is the big idea—and the key to what lies ahead.

From the Trade Paperback edition.

The highly-anticipated paperback edition of The Elements is finally available.

An eye-opening, original collection of gorgeous, never-before-seen photographic representations of the 118 elements in the periodic table.

The elements are what we, and everything around us, are made of. But how many elements has anyone actually seen in pure, uncombined form? The Elements provides this rare opportunity. Based on seven years of research and photography, the pictures in this book make up the most complete, and visually arresting, representation available to the naked eye of every atom in the universe. Organized in order of appearance on the periodic table, each element is represented by a spread that includes a stunning, full-page, full-color photograph that most closely represents it in its purest form. For example, at -183°C, oxygen turns from a colorless gas to a beautiful pale blue liquid.

Also included are fascinating facts, figures, and stories of the elements as well as data on the properties of each, including atomic weight, density, melting and boiling point, valence, electronegativity, and the year and location in which it was discovered. Several additional photographs show each element in slightly altered forms or as used in various practical ways. The element's position on the periodic table is pinpointed on a mini rendering of the table and an illustrated scale of the element's boiling and/or melting points appears on each page along with a density scale that runs along the bottom.

Packed with interesting information, this combination of solid science and stunning artistic photographs is the perfect gift book for every sentient creature in the universe.

Includes a tear-out poster of Theodore Gray's iconic Photographic Periodic Table!

But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.

Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet.

Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype.

But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.

Each chapter will cover a different technique in a spreadsheet so you can follow along:

Mathematical optimization, including non-linear programming and genetic algorithms Clustering via k-means, spherical k-means, and graph modularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, and bag-of-words models Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.

In science fiction, artificial intelligence takes the shape of computers that can speak like people, think for themselves, and sometimes act against us. Sometimes the machines seem to know everything, and symbolize implacable and unknowable power, as in The Matrix. Such machines can also embody the limits of logic, and by extension our own powers of reason. In Arthur C. Clarke's 2001: A Space Odyssey, HAL was a computer of vast capability driven insane by the demands of his programming – to honestly and completely report information – when those instructions conflicted with orders to keep state secrets. Star Trek has given us the android, Lieutenant Commander Data, who strives to be more human. None of these visions came true in quite the way science fiction writers imagined, even though in many ways computers surpass their fictional counterparts. This eBook reviews work in the field and covers topics from chess-playing to quantum computing. The writers tackle how to make computers more powerful, how we define consciousness, what the hard problems are and even how computers might be built once the limits of silicon chips have been reached. Artificial intelligence also raises some thorny ethical questions, such as whether morality can be programmed. These are kinds of issues that make artificial intelligence and computing fascinating. Building an intelligent machine brings together the human desire to create and the question of what makes us what we are. If anyone ever builds a true thinking machine, that last question becomes much more complicated, not less. Data and HAL would probably agree.

This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Implementations, as well as interesting, real-world examples of each data structure and algorithm, are included.

Using both a programming style and a writing style that are exceptionally clean, Kyle Loudon shows you how to use such essential data structures as lists, stacks, queues, sets, trees, heaps, priority queues, and graphs. He explains how to use algorithms for sorting, searching, numerical analysis, data compression, data encryption, common graph problems, and computational geometry. And he describes the relative efficiency of all implementations. The compression and encryption chapters not only give you working code for reasonably efficient solutions, they offer explanations of concepts in an approachable manner for people who never have had the time or expertise to study them in depth.

Anyone with a basic understanding of the C language can use this book. In order to provide maintainable and extendible code, an extra level of abstraction (such as pointers to functions) is used in examples where appropriate. Understanding that these techniques may be unfamiliar to some programmers, Loudon explains them clearly in the introductory chapters.

Contents include:

PointersRecursionAnalysis of algorithmsData structures (lists, stacks, queues, sets, hash tables, trees, heaps, priority queues, graphs)Sorting and searchingNumerical methodsData compressionData encryptionGraph algorithmsGeometric algorithmsThe crisis was partly a failure of mathematical modeling. But even more, it was a failure of some very sophisticated financial institutions to think like physicists. Models—whether in science or finance—have limitations; they break down under certain conditions. And in 2008, sophisticated models fell into the hands of people who didn’t understand their purpose, and didn’t care. It was a catastrophic misuse of science.

The solution, however, is not to give up on models; it's to make them better. Weatherall reveals the people and ideas on the cusp of a new era in finance. We see a geophysicist use a model designed for earthquakes to predict a massive stock market crash. We discover a physicist-run hedge fund that earned 2,478.6% over the course of the 1990s. And we see how an obscure idea from quantum theory might soon be used to create a far more accurate Consumer Price Index.

Both persuasive and accessible, The Physics of Wall Street is riveting history that will change how we think about our economic future.

A comprehensive and comprehensible introduction to the subject, this book is ideal for undergraduates in computer science, physicists, communications engineers, workers involved in artificial intelligence, biologists, psychologists, and physiologists.

The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models.

All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods.The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling.Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied.MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining.

Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projectsAddresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fieldsProvides a comprehensive, practical look at the concepts and techniques you need to get the most out of your dataSemantic Web for the Working Ontologist transforms this information into the practical knowledge that programmers and subject domain experts need. Authors Allemang and Hendler begin with solutions to the basic problems, but don’t stop there: they demonstrate how to develop your own solutions to problems of increasing complexity and ensure that your skills will keep pace with the continued evolution of the Semantic Web.

• Provides practical information for all programmers and subject matter experts engaged in modeling data to fit the requirements of the Semantic Web.

• De-emphasizes algorithms and proofs, focusing instead on real-world problems, creative solutions, and highly illustrative examples.

• Presents detailed, ready-to-apply “recipes” for use in many specific situations.

• Shows how to create new recipes from RDF, RDFS, and OWL constructs.

Author Bob DuCharme has you writing simple queries right away before providing background on how SPARQL fits into RDF technologies. Using short examples that you can run yourself with open source software, you’ll learn how to update, add to, and delete data in RDF datasets.

Get the big picture on RDF, linked data, and the semantic webUse SPARQL to find bad data and create new data from existing dataUse datatype metadata and functions in your queriesLearn techniques and tools to help your queries run more efficientlyUse RDF Schemas and OWL ontologies to extend the power of your queriesDiscover the roles that SPARQL can play in your applicationsPredictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com

Demystifies data mining concepts with easy to understand languageShows how to get up and running fast with 20 commonly used powerful techniques for predictive analysisExplains the process of using open source RapidMiner toolsDiscusses a simple 5 step process for implementing algorithms that can be used for performing predictive analyticsIncludes practical use cases and examples"Such a richness of topics and amazing splendor of illustrations!" — Mathematics Magazine

"An inviting exposition for a literate but not highly scientific audience." — American Mathematical Monthly

This fascinating book explores the connections between chaos theory, physics, biology, and mathematics. Its award-winning computer graphics, optical illusions, and games illustrate the concept of self-similarity, a typical property of fractals. Author Manfred Schroeder — hailed by Publishers Weekly as a modern Lewis Carroll — conveys memorable insights in the form of puns and puzzles that relate abstract mathematics to everyday experience.

Excellent entertainment for readers with a grasp of algebra and some calculus, this book forms a fine university-level introduction to fractal math. Eight pages of color images clarify the text, along with numerous black-and-white illustrations.

In a series of brief and largely self-contained chapters, Nahin discusses a wide range of topics in which math and physics are mutually dependent and mutually illuminating, from Newtonian gravity and Newton's laws of mechanics to ballistics, air drag, and electricity. The mathematical subjects range from algebra, trigonometry, geometry, and calculus to differential equations, Fourier series, and theoretical and Monte Carlo probability. Each chapter includes problems--some three dozen in all--that challenge readers to try their hand at applying what they have learned. Just as in his other books of mathematical puzzles, Nahin discusses the historical background of each problem, gives many examples, includes MATLAB codes, and provides complete and detailed solutions at the end.

Mrs. Perkins's Electric Quilt will appeal to students interested in new math and physics applications, teachers looking for unusual examples to use in class--and anyone who enjoys popular math books.

In Constraint Processing, Rina Dechter, synthesizes these contributions, along with her own significant work, to provide the first comprehensive examination of the theory that underlies constraint processing algorithms. Throughout, she focuses on fundamental tools and principles, emphasizing the representation and analysis of algorithms.Examines the basic practical aspects of each topic and then tackles more advanced issues, including current research challengesBuilds the reader's understanding with definitions, examples, theory, algorithms and complexity analysisSynthesizes three decades of researchers work on constraint processing in AI, databases and programming languages, operations research, management science, and applied mathematics

Key features include:

Thorough treatment of the MSP430’s architecture and functionality along with detailed application-specific guidance Programming and the use of sensor technology to build an embedded system A learn-by-doing experience

With this book you will learn:

The basic theory for electronics design

- Analog circuits

- Digital logic

- Computer arithmetic

- Microcontroller programming

How to design and build a working robotAssembly language and C programming How to develop your own high-performance embedded systems application using an on-going robotics application

Teaches how to develop your own high-performance embedded systems application using an on-going robotics applicationThorough treatment of the MSP430’s architecture and functionality along with detailed application-specific guidanceFocuses on electronics, programming and the use of sensor technology to build an embedded systemCovers assembly language and C programmingThe focus throughout is rooted in the mathematical fundamentals, but the text also investigates a number of interesting applications, including a section on computer graphics, a chapter on numerical methods, and many exercises and examples using MATLAB. Meanwhile, many visuals and problems (a complete solutions manual is available to instructors) are included to enhance and reinforce understanding throughout the book.

Brief yet precise and rigorous, this work is an ideal choice for a one-semester course in linear algebra targeted primarily at math or physics majors. It is a valuable tool for any professor who teaches the subject.

Peter Christen’s book is divided into three parts: Part I, “Overview”, introduces the subject by presenting several sample applications and their special challenges, as well as a general overview of a generic data matching process. Part II, “Steps of the Data Matching Process”, then details its main steps like pre-processing, indexing, field and record comparison, classification, and quality evaluation. Lastly, part III, “Further Topics”, deals with specific aspects like privacy, real-time matching, or matching unstructured data. Finally, it briefly describes the main features of many research and open source systems available today.

By providing the reader with a broad range of data matching concepts and techniques and touching on all aspects of the data matching process, this book helps researchers as well as students specializing in data quality or data matching aspects to familiarize themselves with recent research advances and to identify open research challenges in the area of data matching. To this end, each chapter of the book includes a final section that provides pointers to further background and research material. Practitioners will better understand the current state of the art in data matching as well as the internal workings and limitations of current systems. Especially, they will learn that it is often not feasible to simply implement an existing off-the-shelf data matching system without substantial adaption and customization. Such practical considerations are discussed for each of the major steps in the data matching process.Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text.

The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.

- Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis.

This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.

Chapters in Part A explain the significant influence of automation on our life, on individuals, organizations, and society, in economic terms and context, and impacts of precision, accuracy and reliability with automatic and automated equipment and operations. The theoretical and scientific knowledge about the human role in automation is covered in Part B from the human-oriented and human-centered aspects of automation to be applied and operated by humans, to the human role as supervisor and intelligent controller of automation systems and platforms. This part concludes with analysis and discussion on the limits of automation to the best of our current understanding. Covering automation design from theory to building automation machines, systems, and systems-of-systems , Part C explains the fundamental elements of mechatronics, sensors, robots, and other components useful for automation, and how they are combined with control and automation software, including models and techniques for automation software engineering, and the automation of the design process itself. Chapters in Part D cover the basic design requirements for the automation and illustrate examples of how the challenging issues can be solved for the deign and integration of automation with respect to its main purpose: Continuous and discrete processes and industries, design techniques, criteria and algorithms for flow lines, and integrated automation. Concluding this part is the design for safety of automation, and of automation for safety. The main aspects of automation management are covered by the chapters in Part E: Cost effectiveness and economic reasons for the design, feasibility analysis, implementation, rationalization, use, and maintenance of particular automation; performance and functionality measures and criteria. Related also are the issues of how to manage automatically and control maintenance, replacement, and upgrading. Part F, industrial automation, begins with explanation of machine tool automation, including various types of numerical control (NC), flexible, and precision machinery for production, manufacturing, and assembly, digital and virtual industrial production, to detailed design, guidelines and application of automation in the principal industries, from aerospace and automotive to semi-conductor, mining, food, paper and wood industries. Chapters are also devoted to the design, control and operation of functions common to all industrial automation. Infrastructures and service automation are covered in Part G and it is explained how automation is designed, selected, integrated, justified and applied, its challenges and emerging trends in those areas and in the construction of structures, roads and bridges; of smart buildings, smart roads and intelligent vehicles; cleaning of surfaces, tunnels and sewers; land, air, and space transportation; information, knowledge, learning, training, and library services; and in sports and entertainment. Automation in medical and healthcare systems is covered in Part H and shows the exponential penetration and main contributions of automation to the health and medical well being of individuals and societies. First, the scientific and theoretical foundations of control and automation in biological and biomedical systems and mechanisms are explained, then specific areas are described and analyzed. Available, proven, and emerging automation techniques in healthcare delivery and elimination of hospital and other medical errors are also addressed. Finally, Part I, Home, Office, and Enterprise Automation is about functional automation areas at home, in the office, and in general enterprises, including multi-enterprise networks. Chapters also cover the automation theories, techniques and practice, design, operation, challenges and emerging trends in education and learning, banking, commerce. An important dimension of the material compiled for this part is that it is useful for all other functional areas of automation. The concluding part of this Springer Handbook contains figures and tables with statistical information and summaries about automation applications and impacts in four main areas: industrial automation, service automation, healthcare automation, and financial and e-commerce automation. A rich list of associations and of periodical publications around the world that focus on automation in its variety of related fields is also included for the benefit of readers worldwide.

Throughout the 94 chapters, divided into ten main parts, with 124 tables, 1005 figures, the 168 co-authors present proven knowledge, original analysis, best practices and authoritative expertise.

Plenty of case studies, creative examples and unique illustrations, covering topics of automation from the basics and fundamentals to advanced techniques, cases and theories will serve the readers and benefit the students and researchers, engineers and managers, inventors, investors and developers.

Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure.

The book is arranged in four sections, devoted to realizing the universal principle force equals curvature:

Part I: The Euclidean Manifold as a Paradigm

Part II: Ariadne's Thread in Gauge Theory

Part III: Einstein's Theory of Special Relativity

Part IV: Ariadne's Thread in Cohomology

For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum.

Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).