## Similar

From the Trade Paperback edition.

Parallel universes are a staple of science fiction, and it's no wonder. They allow us to explore the question, "what if?" in a way that lets us step completely outside of the world we know, rather than question how that world might have turned out differently. For cosmologists, the question isn't "what if the South won the Civil War?" but "what if the constants that make up the fundamental building blocks of physics were different?" Physicists argue that any slight change to the laws of physics would mean a disruption in the evolution of the universe, and thus our existence. Take gravity, for example: too strong and stars would burn through their fuel far more quickly. If the universe expanded too fast, matter would spread out too thin for galaxies to form. The list of examples goes on – to the point where the laws of physics might seem finely tuned to make our existence possible. Short of a supernatural or divine explanation, one possibility is that our universe isn't the only one. That's the idea explored in this eBook, Possibilities in Parallel: Seeking the Multiverse. In Section 1, we explore why scientists think other universes could exist. After that, we get a look at the implications. Is it possible to have life in a universe with different physical laws? It would seem so. In "Cracking Open a Window," George Musser discusses the possibility that our universe has more than three spatial dimensions – the others happen to be very small. Other articles, including "The Universe's Unseen Dimensions," analyze the idea that our universe is one of many "branes" – three-dimensional structures stretched out over a higher-dimensional space. The concept of a parallel universe also touches time travel, and then there's the question of what the term "parallel universe" actually means. It's a triumph of the sciences that the very question of why the universe looks as it does can be asked at all. There are currently several possibilities for a multiverse, if it exists. Time and a lot of scientific spadework will reveal which one is right – and get us closer to answering those metaphysical questions: what if, why us, why now?

For most people, quantum theory is a byword for mysterious, impenetrable science. And yet for many years it was equally baffling for scientists themselves.

In this magisterial book, Manjit Kumar gives a dramatic and superbly-written history of this fundamental scientific revolution, and the divisive debate at its core. Quantum theory looks at the very building blocks of our world, the particles and processes without which it could not exist.

Yet for 60 years most physicists believed that quantum theory denied the very existence of reality itself. In this tour de force of science history, Manjit Kumar shows how the golden age of physics ignited the greatest intellectual debate of the twentieth century.

Quantum theory is weird. In 1905, Albert Einstein suggested that light was a particle, not a wave, defying a century of experiments. Werner Heisenberg's uncertainty principle and Erwin Schrodinger's famous dead-and-alive cat are similarly strange. As Niels Bohr said, if you weren't shocked by quantum theory, you didn't really understand it.

While "Quantum" sets the science in the context of the great upheavals of the modern age, Kumar's centrepiece is the conflict between Einstein and Bohr over the nature of reality and the soul of science. 'Bohr brainwashed a whole generation of physicists into believing that the problem had been solved', lamented the Nobel Prize-winning physicist Murray Gell-Mann. But in "Quantum", Kumar brings Einstein back to the centre of the quantum debate. "Quantum" is the essential read for anyone fascinated by this complex and thrilling story and by the band of brilliant men at its heart.

First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics.

In this follow-up to the New York Times best-selling The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics' weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind's eponymous Stanford University-hosted continuing education course.

An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.

If you ever regretted not taking physics in college--or simply want to know how to think like a physicist--this is the book for you. In this bestselling introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

In The Intention Experiment, internationally bestselling author Lynne McTaggart, an award-winning science journalist and leading figure in the human consciousness studies community, presents a gripping scientific detective story and takes you on a mind-blowing journey to the farthest reaches of consciousness. She profiles the colorful pioneers in intention science and works with a team of renowned scientists from around the world, including physicist Fritz-Albert Popp of the International Institute of Biophysics and Dr. Gary Schwartz, professor of psychology, medicine, and neurology at the University of Arizona, to determine the effects of focused group intention on scientifically quantifiable targets -- animal, plant, and human.

The Intention Experiment builds on the discoveries of McTaggart's first book, international bestseller The Field: The Quest for the Secret Force of the Universe, which documented discoveries that point to the existence of a quantum energy field. The Field created a picture of an interconnected universe and a scientific explanation for many of the most profound human mysteries, from alternative medicine and spiritual healing to extrasensory perception and the collective unconscious. The Intention Experiment shows you myriad ways that all this information can be incorporated into your life.

After narrating the exciting developments in the science of intention, McTaggart offers a practical program to get in touch with your own thoughts, to increase the activity and strength of your intentions, and to begin achieving real change in your life. After you've begun to realize the amazing potential of focused intention, and the times when it is most powerful, McTaggart invites you to participate in an unprecedented experiment: Using The Intention Experiment website to coordinate your involvement and track results, you and other participants around the world will focus your power of intention on specific targets, giving you the opportunity to become a part of scientific history.

The Intention Experiment redefines what a book does. It is the first "living" book in three dimensions. The book's text and website are inextricably linked, forming the hub of an entirely self-funded research program, the ultimate aim of which is philanthropic. An original piece of scientific investigation that involves the reader in its quest, The Intention Experiment explores human thought and intention as a tangible energy -- an inexhaustible but simple resource with an awesome potential to focus our lives, heal our illnesses, clean up our communities, and improve the planet.

The Intention Experiment also forces you to rethink what it is to be human. As it proves, we're connected to everyone and everything, and that discovery demands that we pay better attention to our thoughts, intentions, and actions. Here's how you can.

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.

The authors outline how their positions have further diverged on a number of key issues, including the spatial geometry of the universe, inflationary versus cyclic theories of the cosmos, and the black-hole information-loss paradox. Though much progress has been made, Hawking and Penrose stress that physicists still have further to go in their quest for a quantum theory of gravity.

Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Watch a Video

The subatomic realm has a reputation for weirdness, spawning any number of profound misunderstandings, journeys into Eastern mysticism, and woolly pronouncements on the interconnectedness of all things. Cox and Forshaw's contention? There is no need for quantum mechanics to be viewed this way. There is a lot of mileage in the “weirdness” of the quantum world, and it often leads to confusion and, frankly, bad science. The Quantum Universe cuts through the Wu Li and asks what observations of the natural world made it necessary, how it was constructed, and why we are confident that, for all its apparent strangeness, it is a good theory.

The quantum mechanics of The Quantum Universe provide a concrete model of nature that is comparable in its essence to Newton's laws of motion, Maxwell's theory of electricity and magnetism, and Einstein's theory of relativity.

Physicist Dave Goldberg speeds across space, time and everything in between showing that our elegant universe—from the Higgs boson to antimatter to the most massive group of galaxies—is shaped by hidden symmetries that have driven all our recent discoveries about the universe and all the ones to come.

Why is the sky dark at night? If there is anti-matter, can there be anti-people? Why are past, present, and future our only options? Saluting the brilliant but unsung female mathematician Emmy Noether as well as other giants of physics, Goldberg answers these questions and more, exuberantly demonstrating that symmetry is the big idea—and the key to what lies ahead.

From the Trade Paperback edition.

Life is the most extraordinary phenomenon in the known universe; but how did it come to be? Even in an age of cloning and artificial biology, the remarkable truth remains: nobody has ever made anything living entirely out of dead material. Life remains the only way to make life. Are we still missing a vital ingredient in its creation?

Using first-hand experience at the cutting edge of science, Jim Al-Khalili and Johnjoe Macfadden reveal that missing ingredient to be quantum mechanics. Drawing on recent ground-breaking experiments around the world, each chapter in Life on the Edge illustrates one of life's puzzles: How do migrating birds know where to go? How do we really smell the scent of a rose? How do our genes copy themselves with such precision? Life on the Edge accessibly reveals how quantum mechanics can answer these probing questions of the universe.

Guiding the reader through the rapidly unfolding discoveries of the last few years, Al-Khalili and McFadden describe the explosive new field of quantum biology and its potentially revolutionary applications, while offering insights into the biggest puzzle of all: what is life? As they brilliantly demonstrate in these groundbreaking pages, life exists on the quantum edge.

– Winner, Stephen Hawking Medal for Science Communication

In Three Roads to Quantum Gravity, Lee Smolin provides an accessible overview of the attempts to build a final "theory of everything." He explains in simple terms what scientists are talking about when they say the world is made from exotic entities such as loops, strings, and black holes and tells the fascinating stories behind these discoveries: the rivalries, epiphanies, and intrigues he witnessed firsthand.

"Provocative, original, and unsettling." --New York Review of Books

"An excellent writer, a creative thinker."--Nature

Dirac’s personality is legendary. He was an extraordinarily reserved loner, relentlessly literal-minded and appeared to have no empathy with most people. Yet he was a family man and was intensely loyal to his friends. His tastes in the arts ranged from Beethoven to Cher, from Rembrandt to Mickey Mouse.

Based on previously undiscovered archives, The Strangest Man reveals the many facets of Dirac’s brilliantly original mind. A compelling human story, The Strangest Man also depicts a spectacularly exciting era in scientific history.

One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text.

The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students.

This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes.

New to this Edition:

65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chainsContains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new examsUpdated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bankIncludes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field

Hallmark features:

Superior writing styleExcellent exercises and examples covering the wide breadth of coverage of probability topics Real-world applications in engineering, science, business and economics

Quantum mechanics underpins modern science and provides us with a blueprint for reality itself. And yet it has been said that if you're not shocked by it, you don't understand it. But is quantum physics really so unknowable? Is reality really so strange? And just how can cats be half-alive and half-dead at the same time?

Our journey into the quantum begins with nature's own conjuring trick, in which we discover that atoms -- contrary to the rules of everyday experience -- can exist in two locations at once. To understand this we travel back to the dawn of the twentieth century and witness the birth of quantum theory, which over the next one hundred years was to overthrow so many of our deeply held notions about the nature of our universe. Scientists and philosophers have been left grappling with its implications every since.

The Future of the Mind brings a topic that once belonged solely to the province of science fiction into a startling new reality. This scientific tour de force unveils the astonishing research being done in top laboratories around the world—all based on the latest advancements in neuroscience and physics—including recent experiments in telepathy, mind control, avatars, telekinesis, and recording memories and dreams. The Future of the Mind is an extraordinary, mind-boggling exploration of the frontiers of neuroscience. Dr. Kaku looks toward the day when we may achieve the ability to upload the human brain to a computer, neuron for neuron; project thoughts and emotions around the world on a brain-net; take a “smart pill” to enhance cognition; send our consciousness across the universe; and push the very limits of immortality.

His explanation of quantum physics for lay readers, called "a model of clarity" by Kirkus Reviews, sets the stage for a voyage of discovery through the common ground of science and religion, the entwined nature of mind and body, and our interconnectedness with all of creation.

The author begins with basic characteristics of financial time series data before covering three main topics:

Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methodsKey features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets.

The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.

This is one of the most powerful books you shall ever read. With research from quantum physics, psychology, biology and behavioral epigenetics, as well as many great spiritual teachings, 'Moving Through Parallel Worlds' will guide you on a path to achieving your grandest ambitions.

The title, 'Moving Through Parallel Worlds To Achieve Your Dreams,' is literal - based on the 'Many Worlds Interpretation of Quantum Mechanics,' and it is also a metaphor suggesting positive life transformation. This very night, you shall be reading and then applying the concepts in this book, and that moment will be the starting point of your mastery of wealth, romance, creation, and mastery of all things in the physical world.

'Moving Through Parallel Worlds' draws on science and timeless wisdom, to guide you on a path to unlimited power and enlightenment. 'Moving Through Parallel Worlds To Achieve Your Dreams' will allow you to bridge the discontinuity in your life from the point where you are at right now, to the point where you dream that you can be. This book shall put you into alignment with all that you have imagined possible for yourself and shall show you a path even to that which you may have considered impossible. This book has emerged so that you may be lifted up, and that you may come to realize the power you have to exist in a world that is exactly as you imagine it should be. This is your moment and this book is here, just for you. Enjoy the journey!

Now updated with 30% new material, Roark Formulas for Stress and Strain, Seventh Edition, is the ultimate resource for designers, engineers, and analysts who need to calculate loads and stress. This landmark reference from Warren Young and Richard Budynas provides you with equations and diagrams of structural properties in an easy-to-use, thumb-through format. Updated, with a user-friendly page layout, this new edition includes expanded coverage of joints, bearing and shear stress, experimental stress analysis, and stress concentrations, as well as material behavior coverage and stress and strain measurement. You’ll also find expanded tables and cases; improved notations and figures in the tables; consistent table and equation numbering; and verification of correction factors.

". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis."

—Journal of the American Statistical Association

Features newly developed topics and applications of the analysis of longitudinal data

Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of longitudinal data that can be applied across various fields of study, from the health and medical sciences to the social and behavioral sciences.

The authors incorporate their extensive academic and research experience along with various updates that have been made in response to reader feedback. The Second Edition features six newly added chapters that explore topics currently evolving in the field, including:

Fixed effects and mixed effects models Marginal models and generalized estimating equations Approximate methods for generalized linear mixed effects models Multiple imputation and inverse probability weighted methods Smoothing methods for longitudinal data Sample size and powerEach chapter presents methods in the setting of applications to data sets drawn from the health sciences. New problem sets have been added to many chapters, and a related website features sample programs and computer output using SAS, Stata, and R, as well as data sets and supplemental slides to facilitate a complete understanding of the material.

With its strong emphasis on multidisciplinary applications and the interpretation of results, Applied Longitudinal Analysis, Second Edition is an excellent book for courses on statistics in the health and medical sciences at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and professionals in the medical, public health, and pharmaceutical fields as well as those in social and behavioral sciences who would like to learn more about analyzing longitudinal data.

Some things are both waves and particles. . .at the same time.

Electrons simply disappear . . . all the time.

If the universe is this wild and unpredictable, so full of possibility, why are your thoughts about your own life so limited?

Hundreds of years ago, science and religion split apart; they became antagonists in the great game of explanation and discovery. But science and religion are two sides of the same coin. They both help explain the universe, our place in the great plan and the meaning of our lives. In fact, they can only begin to do that adequately when they work together.

What the Bleep Do We Know?!TM is a book of amazing science. With the help of more than a dozen research and theoretical scientists, it takes you through the looking glass of quantum physics into a universe that is more bizarre and alive than ever imagined. Then it takes you beyond, into the outer-inner edges of our scientific knowledge of consciousness, perception, body chemistry and brain structure. What is a thought made of? What is reality made of? And most importantly, how does a thought change the nature of reality?

This science leads not just to the material world, but deep into the realm of spirituality. If observation affects the outcome, we aren’t merely part of the universe, but participants in it. If thoughts are more than random neural firings, than consciousness is more than an anatomical accident. A higher power exists, but is it truly out there? Where is the dividing line between out there and in here?

This is not a book of definitive answers. This is a book of mind stretching questions. It is a book that shows you not the path, but the endless possibilities. Do you think you have to go to the same job every day, do the same errands, think the same thoughts, feel the same way? Well, think again.

Space and time form the very fabric of the cosmos. Yet they remain among the most mysterious of concepts. Is space an entity? Why does time have a direction? Could the universe exist without space and time? Can we travel to the past? Greene has set himself a daunting task: to explain non-intuitive, mathematical concepts like String Theory, the Heisenberg Uncertainty Principle, and Inflationary Cosmology with analogies drawn from common experience. From Newton’s unchanging realm in which space and time are absolute, to Einstein’s fluid conception of spacetime, to quantum mechanics’ entangled arena where vastly distant objects can instantaneously coordinate their behavior, Greene takes us all, regardless of our scientific backgrounds, on an irresistible and revelatory journey to the new layers of reality that modern physics has discovered lying just beneath the surface of our everyday world.

The author can awaken for you a faculty which is surprisingly dormant in accountants, engineers, scientists, businesspeople, and others who work with figures. This is "number sense" — or the ability to recognize relations between numbers considered as whole quantities. Lack of this number sense makes it entirely possible for a scientist to be proficient in higher mathematics, but to bog down in the arithmetic of everyday life.

This book teaches the necessary mathematical techniques that schools neglect to teach: Horizontal addition, left to right multiplication and division, etc. You will learn a method of multiplication so rapid that you'll be able to do products in not much more time than it would take to write the problem down on paper.

This is not a collection of tricks that work in only a very few special cases, but a serious, capably planned course of basic mathematics for self-instruction. It contains over 9,000 short problems and their solutions for you to work during spare moments. Five or ten minutes spent daily on this book will, within ten weeks, give you a number sense that will double or triple your calculation speed.

“Where did the universe come from? What was there before it? What will the future bring? And finally, why is there something rather than nothing?”

One of the few prominent scientists today to have crossed the chasm between science and popular culture, Krauss describes the staggeringly beautiful experimental observations and mind-bending new theories that demonstrate not only can something arise from nothing, something will always arise from nothing. With a new preface about the significance of the discovery of the Higgs particle, A Universe from Nothing uses Krauss’s characteristic wry humor and wonderfully clear explanations to take us back to the beginning of the beginning, presenting the most recent evidence for how our universe evolved—and the implications for how it’s going to end.

Provocative, challenging, and delightfully readable, this is a game-changing look at the most basic underpinning of existence and a powerful antidote to outmoded philosophical, religious, and scientific thinking.

Suitable for advanced undergraduates and graduate students of physics, this third edition was edited by Dirk ter Haar, a Fellow of Magdalen College and Reader in Theoretical Physics at the University of Oxford. This enlarged and revised edition includes additional problems from Oxford University Examination papers. The book can be used either in conjunction with another text or as advanced reading for anyone familiar with the basic ideas of quantum mechanics. 1975 edition.

Finding a perfect analogy in the situation of the geometrical characters in Flatland, Professor Rucker continues the adventures of the two-dimensional world visited by a three-dimensional being to explain our three-dimensional world in terms of the fourth dimension. Following this adventure into the fourth dimension, the author discusses non-Euclidean geometry, curved space, time as a higher dimension, special relativity, time travel, and the shape of space-time. The mathematics is sound throughout, but the casual reader may skip those few sections that seem too purely mathematical and still follow the line of argument. Readable and interesting in itself, the annotated bibliography is a valuable guide to further study.

Professor Rucker teaches mathematics at the State University of New York in Geneseo. Students and laymen will find his discussion to be unusually stimulating. Experienced mathematicians and physicists will find a great deal of original material here and many unexpected novelties. Annotated bibliography. 44 problems.

In a series of ingenious experiments conducted in various locations—from a dank sewage tunnel under the Danube River to the balmy air between a pair of mountain peaks in the Canary Islands—the author and his colleagues have demonstrated the reality of such entanglement using photons, or light quanta, created by laser beams. In principle the lessons learned may be applicable in other areas, including the eventual development of quantum computers.

"It is, as far as I'm concerned, among the best books in math ever written....if you are a mathematician and want to have the top reference in probability, this is it." (Amazon.com, January 2006)

A complete and comprehensive classic in probability and measure theory

Probability and Measure, Anniversary Edition by Patrick Billingsley celebrates the achievements and advancements that have made this book a classic in its field for the past 35 years. Now re-issued in a new style and format, but with the reliable content that the third edition was revered for, this Anniversary Edition builds on its strong foundation of measure theory and probability with Billingsley's unique writing style. In recognition of 35 years of publication, impacting tens of thousands of readers, this Anniversary Edition has been completely redesigned in a new, open and user-friendly way in order to appeal to university-level students.

This book adds a new foreward by Steve Lally of the Statistics Department at The University of Chicago in order to underscore the many years of successful publication and world-wide popularity and emphasize the educational value of this book. The Anniversary Edition contains features including:

An improved treatment of Brownian motion Replacement of queuing theory with ergodic theory Theory and applications used to illustrate real-life situations Over 300 problems with corresponding, intensive notes and solutions Updated bibliography An extensive supplement of additional notes on the problems and chapter commentariesPatrick Billingsley was a first-class, world-renowned authority in probability and measure theory at a leading U.S. institution of higher education. He continued to be an influential probability theorist until his unfortunate death in 2011. Billingsley earned his Bachelor's Degree in Engineering from the U.S. Naval Academy where he served as an officer. he went on to receive his Master's Degree and doctorate in Mathematics from Princeton University.Among his many professional awards was the Mathematical Association of America's Lester R. Ford Award for mathematical exposition. His achievements through his long and esteemed career have solidified Patrick Billingsley's place as a leading authority in the field and been a large reason for his books being regarded as classics.

This Anniversary Edition of Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Like the previous editions, this Anniversary Edition is a key resource for students of mathematics, statistics, economics, and a wide variety of disciplines that require a solid understanding of probability theory.

Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference.

At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to:

Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learningBy learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.

Recent advances in the field, particularly Parrondo's paradox, have triggered a surge of interest in the statistical and mathematical theory behind gambling. This interest was acknowledge in the motion picture, "21," inspired by the true story of the MIT students who mastered the art of card counting to reap millions from the Vegas casinos. Richard Epstein's classic book on gambling and its mathematical analysis covers the full range of games from penny matching to blackjack, from Tic-Tac-Toe to the stock market (including Edward Thorp's warrant-hedging analysis). He even considers whether statistical inference can shed light on the study of paranormal phenomena. Epstein is witty and insightful, a pleasure to dip into and read and rewarding to study. The book is written at a fairly sophisticated mathematical level; this is not "Gambling for Dummies" or "How To Beat The Odds Without Really Trying." A background in upper-level undergraduate mathematics is helpful for understanding this work.

o Comprehensive and exciting analysis of all major casino games and variants o Covers a wide range of interesting topics not covered in other books on the subject o Depth and breadth of its material is unique compared to other books of this nature

Richard Epstein's website: www.gamblingtheory.net

From the Trade Paperback edition.

This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables.

Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-the-art techniques for building, interpreting, and assessing the performance of LR models. New and updated features include:

A chapter on the analysis of correlated outcome data A wealth of additional material for topics ranging from Bayesian methods to assessing model fit Rich data sets from real-world studies that demonstrate each method under discussion Detailed examples and interpretation of the presented results as well as exercises throughoutApplied Logistic Regression, Third Edition is a must-have guide for professionals and researchers who need to model nominal or ordinal scaled outcome variables in public health, medicine, and the social sciences as well as a wide range of other fields and disciplines.

Across various industries, compensation professionals work to organize and analyze aspects of employment that deal with elements of pay, such as deciding base salary, bonus, and commission provided by an employer to its employees for work performed. Acknowledging the numerous quantitative analyses of data that are a part of this everyday work, Statistics for Compensation provides a comprehensive guide to the key statistical tools and techniques needed to perform those analyses and to help organizations make fully informed compensation decisions.

This self-contained book is the first of its kind to explore the use of various quantitative methods—from basic notions about percents to multiple linear regression—that are used in the management, design, and implementation of powerful compensation strategies. Drawing upon his extensive experience as a consultant, practitioner, and teacher of both statistics and compensation, the author focuses on the usefulness of the techniques and their immediate application to everyday compensation work, thoroughly explaining major areas such as:

Frequency distributions and histograms

Measures of location and variability

Model building

Linear models

Exponential curve models

Maturity curve models

Power models

Market models and salary survey analysis

Linear and exponential integrated market models

Job pricing market models

Throughout the book, rigorous definitions and step-by-step procedures clearly explain and demonstrate how to apply the presented statistical techniques. Each chapter concludes with a set of exercises, and various case studies showcase the topic's real-world relevance. The book also features an extensive glossary of key statistical terms and an appendix with technical details. Data for the examples and practice problems are available in the book and on a related FTP site.

Statistics for Compensation is an excellent reference for compensation professionals, human resources professionals, and other practitioners responsible for any aspect of base pay, incentive pay, sales compensation, and executive compensation in their organizations. It can also serve as a supplement for compensation courses at the upper-undergraduate and graduate levels.

“This book should be an essential part of the personal library of every practicing statistician.”—Technometrics

Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation.

Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features:

The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.Addressing the highly competitive and risky environments of current-day financial and sports gambling markets, Forecasting in Financial and Sports Gambling Markets details the dynamic process of constructing effective forecasting rules based on both graphical patterns and adaptive drift modeling (ADM) of cointegrated time series. The book uniquely identifies periods of inefficiency that these markets oscillate through and develops profitable forecasting models that capitalize on irrational behavior exhibited during these periods.

Providing valuable insights based on the author's firsthand experience, this book utilizes simple, yet unique, candlestick charts to identify optimal time periods in financial markets and optimal games in sports gambling markets for which forecasting models are likely to provide profitable trading and wagering outcomes. Featuring detailed examples that utilize actual data, the book addresses various topics that promote financial and mathematical literacy, including:

Higher order ARMA processes in financial markets

The effects of gambling shocks in sports gambling markets

Cointegrated time series with model drift

Modeling volatility

Throughout the book, interesting real-world applications are presented, and numerous graphical procedures illustrate favorable trading and betting opportunities, which are accompanied by mathematical developments in adaptive model forecasting and risk assessment. A related web site features updated reviews in sports and financial forecasting and various links on the topic.

Forecasting in Financial and Sports Gambling Markets is an excellent book for courses on financial economics and time series analysis at the upper-undergraduate and graduate levels. The book is also a valuable reference for researchers and practitioners working in the areas of retail markets, quant funds, hedge funds, and time series. Also, anyone with a general interest in learning about how to profit from the financial and sports gambling markets will find this book to be a valuable resource.

Your plain-English guide to understanding and working with the micro world

Quantum physics — also called quantum mechanics or quantum field theory — can be daunting for even the most dedicated student or enthusiast of science, math, or physics. This friendly, concise guide makes this challenging subject understandable and accessible, from atoms to particles to gases and beyond. Plus, it's packed with fully explained examples to help you tackle the tricky equations like a pro!

Compatible with any classroom course — study at your own pace and prepare for graduate or professional exams Your journey begins here — understand what quantum physics is and what kinds of problems it can solve Know the basic math — from state vectors to quantum matrix manipulations, get the foundation you need to proceed Put quantum physics to work — make sense of Schrödinger's equation and handle particles bound in square wells and harmonic oscillators Solve problems in three dimensions — use the full operators to handle wave functions and eigenvectors to find the natural wave functions of a system Discover the latest research — learn the cutting-edge quantum physics theories that aim to explain the universe itselfDrawing on physics and mechanical engineering, Steven Vogel looks at how animals swim and fly, modes of terrestrial locomotion, organism responses to winds and water currents, circulatory and suspension-feeding systems, and the relationship between size and mechanical design. He also investigates links between the properties of biological materials--such as spider silk, jellyfish jelly, and muscle--and their structural and functional roles. Early chapters and appendices introduce relevant physical variables for quantification, and problem sets are provided at the end of each chapter. Comparative Biomechanics is useful for physical scientists and engineers seeking a guide to state-of-the-art biomechanics. For a wider audience, the textbook establishes the basic biological context for applied areas--including ergonomics, orthopedics, mechanical prosthetics, kinesiology, sports medicine, and biomimetics--and provides materials for exhibit designers at science museums.

Problem sets at the ends of chapters Appendices cover basic background information Updated and expanded documentation and materials Revised figures and text Increased coverage of friction, viscoelastic materials, surface tension, diverse modes of locomotion, and biomimetics