Atomic physics

A book in which one great mind explains the work of another great mind in terms comprehensible to the layman is a significant achievement. This is such a book. Max Born is a Nobel Laureate (1955) and one of the world's great physicists: in this book he analyzes and interprets the theory of Einsteinian relativity. The result is undoubtedly the most lucid and insightful of all the books that have been written to explain the revolutionary theory that marked the end of the classical and the beginning of the modern era of physics.
The author follows a quasi-historical method of presentation. The book begins with a review of the classical physics, covering such topics as origins of space and time measurements, geometric axioms, Ptolemaic and Copernican astronomy, concepts of equilibrium and force, laws of motion, inertia, mass, momentum and energy, Newtonian world system (absolute space and absolute time, gravitation, celestial mechanics, centrifugal forces, and absolute space), laws of optics (the corpuscular and undulatory theories, speed of light, wave theory, Doppler effect, convection of light by matter), electrodynamics (including magnetic induction, electromagnetic theory of light, electromagnetic ether, electromagnetic laws of moving bodies, electromagnetic mass, and the contraction hypothesis). Born then takes up his exposition of Einstein's special and general theories of relativity, discussing the concept of simultaneity, kinematics, Einstein's mechanics and dynamics, relativity of arbitrary motions, the principle of equivalence, the geometry of curved surfaces, and the space-time continuum, among other topics. Born then points out some predictions of the theory of relativity and its implications for cosmology, and indicates what is being sought in the unified field theory.
This account steers a middle course between vague popularizations and complex scientific presentations. This is a careful discussion of principles stated in thoroughly acceptable scientific form, yet in a manner that makes it possible for the reader who has no scientific training to understand it. Only high school algebra has been used in explaining the nature of classical physics and relativity, and simple experiments and diagrams are used to illustrate each step. The layman and the beginning student in physics will find this an immensely valuable and usable introduction to relativity. This Dover 1962 edition was greatly revised and enlarged by Dr. Born.


The contributions of few contemporary scientists have been as far reaching in their effects as those of Nobel Laureate Werner Heisenberg. His matrix theory is one of the bases of modern quantum mechanics, while his "uncertainty principle" has altered our whole philosophy of science.
In this classic, based on lectures delivered at the University of Chicago, Heisenberg presents a complete physical picture of quantum theory. He covers not only his own contributions, but also those of Bohr, Dirac, Bose, de Broglie, Fermi, Einstein, Pauli, Schrodinger, Somerfield, Rupp, ·Wilson, Germer, and others in a text written for the physical scientist who is not a specialist in quantum theory or in modern mathematics.
Partial contents: introduction (theory and experiment, fundamental concepts); critique of physical concepts of the corpuscular theory (uncertainty relations and their illustration); critique of the physical concepts of the wave theory (uncertainty relations for waves, discussion of an actual measurement of the electromagnetic field); statistical interpretation of quantum theory (mathematical considerations, interference of probabilities, Bohr's complementarity); discussion of important experiments (C. T. R. Wilson, diffraction , Einstein-Rupp, emission, absorption and dispersion of radiation, interference and conservation laws, Compton effect, radiation fluctuation phenomena, relativistic formulation of the quantum theory).
An 80-page appendix on the mathematical apparatus of the quantum theory is provided for the specialist.
The author of this concise, brilliant series of lectures on mathematical methods in quantum mechanics was one of the shining intellects in the field, winning a Nobel prize in 1933 for his pioneering work in the quantum mechanics of the atom. Beyond that, he developed the transformation theory of quantum mechanics (which made it possible to calculate the statistical distribution of certain variables), was one of the major authors of the quantum theory of radiation, codiscovered the Fermi-Dirac statistics, and predicted the existence of the positron.
The four lectures in this book were delivered at Yeshiva University, New York, in 1964. The first, "The Hamiltonian Method," is an introduction to visualizing quantum theory through the use of classical mechanics. The remaining lectures build on that idea. "The Problem of Quantization" shows how one can start with a classical field theory and end up with a quantum field theory. In "Quantization on Curved Surfaces," Dirac examines the possibility of building a relativistic quantum theory on curved surfaces. He deduces that it is not possible, but it should be possible on flat surfaces. In the final lecture, "Quantization on Flat Surfaces," he concludes that "we can set up the basic equations for a quantum theory of the Born-Infeld electrodynamics agreeing with special relativity, but [not] with general relativity." Physics and chemistry students will find this book an invaluable addition to their libraries, as will anyone intrigued by the far-reaching and influential ideas of quantum mechanics.
This book is devoted to one of the most active domains of atomic physic- atomic physics of heavy positive ions. During the last 30 years, this terrain has attracted enormous attention from both experimentalists and theoreti cians. On the one hand, this interest is stimulated by rapid progress in the development of laboratory ion sources, storage rings, ion traps and methods for ion cooling. In many laboratories, a considerable number of complex and accurate experiments have been initiated, challenging new frontiers. Highly charged ions are used for investigations related to fundamental research and to more applied fields such as controlled nuclear fusion driven by heavy ions and its diagnostics, ion-surface interaction, physics of hollow atoms, x-ray lasers, x-ray spectroscopy, spectrometry of ions in storage rings and ion traps, biology, and medical therapy. On the other hand, the new technologies have stimulated elaborate theo retical investigations, especially in developing QED theory, relativistic many body techniques, plasma-kinetic modeling based on the Coulomb interactions of highly charged ions with photons and various atomic particles - electrons, atoms, molecules and ions. The idea of assembling this book matured while the editors were writ ing another book, X-Ray Radiation of Highly Charged Ions by H. F. Beyer, H. -J. Kluge and V. P. Shevelko (Springer, Berlin, Heidelberg 1997) covering a broad range of x-ray and other radiative phenomena central to atomic physics with heavy ions.
The Eighth International Conference on Atomic Physics was held at Ch~lmers University of Technology, Goteborg, Sweden on August 2-6, 1982. Following the tradition established by earlier conferences in the series, it was attended by 280 participants from 24 countries. A total of 28 invited talks were delivered at the conference. These talks, which are presented in this volume, covered a wide range of topics in atomic physics in a broad sense. They extend from very basic problems (e.g., the interpretation of quantum mechanics in light of Bell's theorem and the feasibility of relativistic many-body calculations) to applied problems (e.g., laser detection of trace elements and spectroscopy of chemisorbed molecules). Professor M.Ya. Amusia was unable to attend the conference but his invited paper is included here. Professor V.S. Letokhov presented a talk entitled "Prospects of Laser Detection of Very Rare Isotopes, but was unable to provide a manuscript. At the conference, 175 post ers were presented. Abstracts have been published in a separate volume. It is very much appreciated that all the 1981 Nobel laureates, Nicolaas Bloembergen, Arthur Schawlow and Kai Siegbahn, were able to attend and deliver their invited talks. Professor Schawlow summed up the conference and this too is presented here. The con ference also benefited considerably from the presence of Professor 1.1. Rabi, who gave a much appreciated talk at the conference dinner. As this talk was given without a manuscript, it could unfortunately not be included here.
"Dr. Gamow, physicist and gifted writer, has sketched an intriguing portrait of the scientists and clashing ideas that made the quantum revolution." — Christian Science Monitor
In 1900, German physicist Max Planck postulated that light, or radiant energy, can exist only in the form of discrete packages or quanta. This profound insight, along with Einstein's equally momentous theories of relativity, completely revolutionized man's view of matter, energy, and the nature of physics itself.
In this lucid layman's introduction to quantum theory, an eminent physicist and noted popularizer of science traces the development of quantum theory from the turn of the century to about 1930 — from Planck's seminal concept (still developing) to anti-particles, mesons, and Enrico Fermi's nuclear research. Gamow was not just a spectator at the theoretical breakthroughs which fundamentally altered our view of the universe, he was an active participant who made important contributions of his own. This "insider's" vantage point lends special validity to his careful, accessible explanations of Heisenberg's Uncertainty Principle, Niels Bohr's model of the atom, the pilot waves of Louis de Broglie and other path-breaking ideas.
In addition, Gamow recounts a wealth of revealing personal anecdotes which give a warm human dimension to many giants of 20th-century physics. He ends the book with the Blegdamsvej Faust, a delightful play written in 1932 by Niels Bohr's students and colleagues to satirize the epochal developments that were revolutionizing physics. This celebrated play is available only in this volume.
Written in a clear, lively style, and enhanced by 12 photographs (including candid shots of Rutherford, Bohr, Pauli, Heisenberg, Fermi, and others), Thirty Years that Shook Physics offers both scientists and laymen a highly readable introduction to the brilliant conceptions that helped unlock many secrets of energy and matter and laid the groundwork for future discoveries.
Now updated—the leading single-volume introduction to solid state and soft condensed matter physics

This Second Edition of the unified treatment of condensed matter physics keeps the best of the first, providing a basic foundation in the subject while addressing many recent discoveries. Comprehensive and authoritative, it consolidates the critical advances of the past fifty years, bringing together an exciting collection of new and classic topics, dozens of new figures, and new experimental data.

This updated edition offers a thorough treatment of such basic topics as band theory, transport theory, and semiconductor physics, as well as more modern areas such as quasicrystals, dynamics of phase separation, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids. In addition to careful study of electron dynamics, electronics, and superconductivity, there is much material drawn from soft matter physics, including liquid crystals, polymers, and fluid dynamics.

  • Provides frequent comparison of theory and experiment, both when they agree and when problems are still unsolved

  • Incorporates many new images from experiments

  • Provides end-of-chapter problems including computational exercises

  • Includes more than fifty data tables and a detailed forty-page index

  • Offers a solutions manual for instructors

Featuring 370 figures and more than 1,000 recent and historically significant references, this volume serves as a valuable resource for graduate and undergraduate students in physics, physics professionals, engineers, applied mathematicians, materials scientists, and researchers in other fields who want to learn about the quantum and atomic underpinnings of materials science from a modern point of view.

The book is the culmination of the authors' many years of teaching and research in atomic physics, nuclear and particle physics, and modern physics. It is also a crystallization of their intense passion and strong interest in the history of physics and the philosophy of science.The book gives students a broad perspective of the current understandings of the basic structures of matter from atoms, nucleus to leptons, quarks, and gluons along with the essential introductory quantum mechanics and special relativity. Fundamentals aside, the book retrospects the historical development and examines the challenging future directions of nuclear and particle physics. Interwoven within the content are up-to-date examples of very recent developments and future plans that show in detail how the techniques and ideas of atomic, nuclear, and particle physics have been used and are being used to solve important problems in basic and applied areas of physics, chemistry, and biology that are closely linked to the prevailing major societal problems in medicine, energy resources, new custom-made materials and environmental pollution, as well as areas that encroach the broad cultural and historical interest. The uncertain path of success and failure, opportunities seized and missed, and the axiom of probability and scientists' intuition in the unfolding human drama of scientific discovery are vividly presented. Throughout the highly perceptive book, readers, especially the students are encouraged to reflect on problems and ask questions.
In 1900 many eminent scientists did not believe atoms existed, yet within just a few years the atomic century launched into history with an astonishing string of breakthroughs in physics that began with Albert Einstein and continues to this day. Before this explosive growth into the modern age took place, an all-but-forgotten genius strove for forty years to win acceptance for the atomic theory of matter and an altogether new way of doing physics. Ludwig Boltz-mann battled with philosophers, the scientific establishment, and his own potent demons. His victory led the way to the greatest scientific achievements of the twentieth century.

Now acclaimed science writer David Lindley portrays the dramatic story of Boltzmann and his embrace of the atom, while providing a window on the civilized world that gave birth to our scientific era. Boltzmann emerges as an endearingly quixotic character, passionately inspired by Beethoven, who muddled through the practical matters of life in a European gilded age.

Boltzmann's story reaches from fin de siècle Vienna, across Germany and Britain, to America. As the Habsburg Empire was crumbling, Germany's intellectual might was growing; Edinburgh in Scotland was one of the most intellectually fertile places on earth; and, in America, brilliant independent minds were beginning to draw on the best ideas of the bureaucratized old world.

Boltzmann's nemesis in the field of theoretical physics at home in Austria was Ernst Mach, noted today in the term Mach I, the speed of sound. Mach believed physics should address only that which could be directly observed. How could we know that frisky atoms jiggling about corresponded to heat if we couldn't see them? Why should we bother with theories that only told us what would probably happen, rather than making an absolute prediction? Mach and Boltzmann both believed in the power of science, but their approaches to physics could not have been more opposed. Boltzmann sought to explain the real world, and cast aside any philosophical criteria. Mach, along with many nineteenth-century scientists, wanted to construct an empirical edifice of absolute truths that obeyed strict philosophical rules. Boltzmann did not get on well with authority in any form, and he did his best work at arm's length from it. When at the end of his career he engaged with the philosophical authorities in the Viennese academy, the results were personally disastrous and tragic. Yet Boltzmann's enduring legacy lives on in the new physics and technology of our wired world.

Lindley's elegant telling of this tale combines the detailed breadth of the best history, the beauty of theoretical physics, and the psychological insight belonging to the finest of novels.
©2021 GoogleSite Terms of ServicePrivacyDevelopersAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.