## Similar

The first five chapters encompass the core material of the book. These chapters cover fundamental concepts, holomorphic and harmonic functions, Cauchy theory and its applications, and isolated singularities. Subsequent chapters discuss the argument principle, geometric theory, and conformal mapping, followed by a more advanced discussion of harmonic functions. The author also presents a detailed glimpse of how complex variables are used in the real world, with chapters on Fourier and Laplace transforms as well as partial differential equations and boundary value problems. The final chapter explores computer tools, including Mathematica®, MapleTM, and MATLAB®, that can be employed to study complex variables. Each chapter contains physical applications drawing from the areas of physics and engineering.

Offering new directions for further learning, this text provides modern students with a powerful toolkit for future work in the mathematical sciences.

Back by popular demand, Real Analysis and Foundations, Third Edition bridges the gap between classic theoretical texts and less rigorous ones, providing a smooth transition from logic and proofs to real analysis. Along with the basic material, the text covers Riemann-Stieltjes integrals, Fourier analysis, metric spaces and applications, and differential equations.

New to the Third Edition

Offering a more streamlined presentation, this edition moves elementary number systems and set theory and logic to appendices and removes the material on wavelet theory, measure theory, differential forms, and the method of characteristics. It also adds a chapter on normed linear spaces and includes more examples and varying levels of exercises.

Extensive Examples and Thorough Explanations Cultivate an In-Depth Understanding

This best-selling book continues to give students a solid foundation in mathematical analysis and its applications. It prepares them for further exploration of measure theory, functional analysis, harmonic analysis, and beyond.

—Albert Boggess, Professor and Director of the School of Mathematics and Statistical Sciences, Arizona State University, Tempe, USA

Designed for a one- or two-semester undergraduate course, Differential Equations: Theory, Technique and Practice, Second Edition educates a new generation of mathematical scientists and engineers on differential equations. This edition continues to emphasize examples and mathematical modeling as well as promote analytical thinking to help students in future studies.

New to the Second Edition

Improved exercise sets and examples Reorganized material on numerical techniques Enriched presentation of predator-prey problems Updated material on nonlinear differential equations and dynamical systems A new appendix that reviews linear algebraIn each chapter, lively historical notes and mathematical nuggets enhance students’ reading experience by offering perspectives on the lives of significant contributors to the discipline. "Anatomy of an Application" sections highlight rich applications from engineering, physics, and applied science. Problems for review and discovery also give students some open-ended material for exploration and further learning.

Convexity is an ancient idea going back to Archimedes. Used sporadically in the mathematical literature over the centuries, today it is a flourishing area of research and a mathematical subject in its own right. Convexity is used in optimization theory, functional analysis, complex analysis, and other parts of mathematics.

Convex Analysis

introduces analytic tools for studying convexity and provides analytical applications of the concept. The book includes a general background on classical geometric theory which allows readers to obtain a glimpse of how modern mathematics is developed and how geometric ideas may be studied analytically.Featuring a user-friendly approach, the book contains copious examples and plenty of figures to illustrate the ideas presented. It also includes an appendix with the technical tools needed to understand certain arguments in the book, a tale of notation, and a thorough glossary to help readers with unfamiliar terms. This book is a definitive introductory text to the concept of convexity in the context of mathematical analysis and a suitable resource for students and faculty alike.

Streamlined for the interests of engineers, this version:

Includes new coverage of Sturm-Liouville theory and problems Discusses PDEs, boundary value problems, and dynamical systems Features an appendix that provides a linear algebra review Augments the substantial and valuable exercise sets Enhances numerous examples to ensure clarityA solutions manual is available with qualifying course adoption.

Differential Equations: Theory, Technique, and Practice with Boundary Value Problems delivers a stimulating exposition of modeling and computing, preparing students for higher-level mathematical and analytical thinking.

Supported by many examples in mathematics, physics, economics, engineering, and other disciplines, Essentials of Topology with Applications provides a clear, insightful, and thorough introduction to the basics of modern topology. It presents the traditional concepts of topological space, open and closed sets, separation axioms, and more, along with applications of the ideas in Morse, manifold, homotopy, and homology theories.

After discussing the key ideas of topology, the author examines the more advanced topics of algebraic topology and manifold theory. He also explores meaningful applications in a number of areas, including the traveling salesman problem, digital imaging, mathematical economics, and dynamical systems. The appendices offer background material on logic, set theory, the properties of real numbers, the axiom of choice, and basic algebraic structures.

Taking a fresh and accessible approach to a venerable subject, this text provides excellent representations of topological ideas. It forms the foundation for further mathematical study in real analysis, abstract algebra, and beyond.

This third edition adds four new chapters on point-set topology, theoretical computer science, the P/NP problem, and zero-knowledge proofs and RSA encryption. The topology chapter builds on the existing real analysis material. The computer science chapters connect basic set theory and logic with current hot topics in the technology sector. Presenting ideas at the cutting edge of modern cryptography and security analysis, the cryptography chapter shows students how mathematics is used in the real world and gives them the impetus for further exploration. This edition also includes more exercises sets in each chapter, expanded treatment of proofs, and new proof techniques.

Continuing to bridge computationally oriented mathematics with more theoretically based mathematics, this text provides a path for students to understand the rigor, axiomatics, set theory, and proofs of mathematics. It gives them the background, tools, and skills needed in more advanced courses.

More up-to-date and accessible to advanced undergraduates than most of the other books available in this specific field, the treatment discusses the history of this active and popular branch of mathematics as well as recent developments. Topics include the Riemann mapping theorem, invariant metrics, normal families, automorphism groups, the Schwarz lemma, harmonic measure, extremal length, analytic capacity, and invariant geometry. A helpful Bibliography and Index complete the text.

Your page design-the style and format of theorems and equations, running heads and section headings, page breaks, fonts, and spacing-makes the difference between, awkward, hard-to-read publications and coherent, professional ones. The Handbook of Typography for the Mathematical Sciences is your key to exercising control over how your books and articles look, read, and ultimately communicate your ideas.

Focusing on TeX, today's medium of choice for producing mathematical documents, the author illuminates all of the issues associated with page design and seeing your manuscript smoothly and accurately through each step of its publication.

Learn how to format, edit, and layout a page

Examine a variety of graphics options: Postscript®, bitmaps, *.jpg, *.gif, and *.pdf files

Discover powerful tools available for indexing, bibliographies, tables, and diagrams

Access a compendium of all TeX commands commonly used in mathematical writing

Explore ways to include diskettes, source code, or software available on the Internet with you publications

Becoming acquainted with this material will make you a well-informed author equipped to deal with publishers, compositors, editors, and typesetters, with TeX consultants, copy editors, and graphics designers-an author who has a better understanding of the publishing process and is able to create better mathematics books.

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.

Fortunately for you, there's Schaum's.

More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

This Schaum's Outline gives you

1,370 fully solved problems Complete review of all course fundamentals Clear, concise explanations of all Advanced Calculus conceptsFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!

Topics include: Numbers; Sequences; Functions, Limits, and Continuity; Derivatives; Integrals; Partial Derivatives; Vectors; Applications of Partial Derivatives; Multiple Integrals; Line Integrals, Surface Integrals, and Integral Theorems; Infinite Series; Improper Integrals; Fourier Series; Fourier Integrals; Gamma and Beta Functions; and Functions of a Complex Variable

Schaum's Outlines--Problem Solved.

A self-contained text, it presents the necessary background on the limit concept, and the first seven chapters could constitute a one-semester introduction to limits. Subsequent chapters discuss differential calculus of the real line, the Riemann-Stieltjes integral, sequences and series of functions, transcendental functions, inner product spaces and Fourier series, normed linear spaces and the Riesz representation theorem, and the Lebesgue integral. Supplementary materials include an appendix on vector spaces and more than 750 exercises of varying degrees of difficulty. Hints and solutions to selected exercises, indicated by an asterisk, appear at the back of the book.

1001 Calculus Practice Problems For Dummies takes you beyond the instruction and guidance offered in Calculus For Dummies, giving you 1001 opportunities to practice solving problems from the major topics in your calculus course. Plus, an online component provides you with a collection of calculus problems presented in multiple-choice format to further help you test your skills as you go.

Gives you a chance to practice and reinforce the skills you learn in your calculus course Helps you refine your understanding of calculus Practice problems with answer explanations that detail every step of every problemThe practice problems in 1001 Calculus Practice Problems For Dummies range in areas of difficulty and style, providing you with the practice help you need to score high at exam time.

Want to "know it ALL" when it comes to pre-calculus? This book gives you the expert, one-on-one instruction you need, whether you're new to pre-calculus or you're looking to ramp up your skills. Providing easy-to-understand concepts and thoroughly explained exercises, math whiz Stan Gibilisco serves as your own private tutor--without the expense! His clear, friendly guidance helps you tackle the concepts and problems that confuse you the most and work through them at your own pace.

Train your brain with ease!

Pre-Calculus Know-It-ALL features:

Checkpoints to help you track your knowledge and skill level Problem/solution pairs and chapter-ending quizzes to reinforce learning Fully explained answers to all practice exercises A multiple-choice exam to prepare you for standardized tests "Extra Credit" and "Challenge" problems to stretch your mindStan's expert guidance gives you the know-how to:

Calculate distance in Cartesian two-and three-space Perform vector multiplication Work with cylindrical and spherical coordinates Understand relations and functions Learn the properties of conic sections Graph exponential, logarithmic, and trigonometric curves Define curves with parametric equations Work with sequences, series, and limits Take college entrance examinations with confidence And much more!The five main ideas involve (1) insuring that in computing there is an intimate connection between the source of the problem and the usability of the answers (2) avoiding isolated formulas and algorithms in favor of a systematic study of alternate ways of doing the problem (3) avoidance of roundoff (4) overcoming the problem of truncation error (5) insuring the stability of a feedback system.

In this second edition, Professor Hamming (Naval Postgraduate School, Monterey, California) extensively rearranged, rewrote and enlarged the material. Moreover, this book is unique in its emphasis on the frequency approach and its use in the solution of problems. Contents include:

I. Fundamentals and Algorithms

II. Polynomial Approximation- Classical Theory

Ill. Fourier Approximation- Modern Theory

IV. Exponential Approximation ... and more

Highly regarded by experts in the field, this is a book with unlimited applications for undergraduate and graduate students of mathematics, science and engineering. Professionals and researchers will find it a valuable reference they will turn to again and again.

"This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications."

—Mathematical Reviews of the American Mathematical Society

An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems.

This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications.

Additional features of the Third Edition include:

A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy modelsRevised proofs and a discussion on the relevance and solution of the dual problem

A section on developing an example in Data Envelopment Analysis

An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games

Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.

Want to "know it ALL" when it comes to calculus? This book gives you the expert, one-on-one instruction you need, whether you're new to calculus or you're looking to ramp up your skills. Providing easy-to-understand concepts and thoroughly explained exercises, math whiz Stan Gibilisco serves as your own private tutor--without the expense! His clear, friendly guidance helps you tackle the concepts and problems that confuse you the most and work through them at your own pace.

Train your brain with ease! Calculus Know-It-ALL features:

Checkpoints to help you track your knowledge and skill level Problem/solution pairs and chapter-ending quizzes to reinforce learning Fully explained answers to all practice exercises A multiple-choice exam to prepare you for standardized tests "Extra Credit" and "Challenge" problems to stretch your mindStan's expert guidance gives you the know-how to:

Understand mappings, relations, and functions Calculate limits and determine continuity Differentiate and integrate functions Analyze graphs using first and second derivatives Define and evaluate inverse functions Use specialized integration techniques Determine arc lengths, surface areas, and solid volumes Work with multivariable functions Take college entrance examinations with confidence And much more!The book begins with a short review of calculus and ordinary differential equations, then moves on to explore integral curves and surfaces of vector fields, quasi-linear and linear equations of first order, series solutions and the Cauchy Kovalevsky theorem. It then delves into linear partial differential equations, examines the Laplace, wave and heat equations, and concludes with a brief treatment of hyperbolic systems of equations.

Among the most important features of the text are the challenging problems at the end of each section which require a wide variety of responses from students, from providing details of the derivation of an item presented to solving specific problems associated with partial differential equations. Requiring only a modest mathematical background, the text will be indispensable to those who need to use partial differential equations in solving physical problems. It will provide as well the mathematical fundamentals for those who intend to pursue the study of more advanced topics, including modern theory.

The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

Review from the first edition:

"This book is intended for the student who has a good, but naïve, understanding of elementary calculus and now wishes to gain a thorough understanding of a few basic concepts in analysis.... The author has tried to write in an informal but precise style, stressing motivation and methods of proof, and ... has succeeded admirably."

—MATHEMATICAL REVIEWS

Opening chapters on classical mechanics examine the laws of particle mechanics; generalized coordinates and differentiable manifolds; oscillations, waves, and Hilbert space; and statistical mechanics. A survey of quantum mechanics covers the old quantum theory; the quantum-mechanical substitute for phase space; quantum dynamics and the Schrödinger equation; the canonical "quantization" of a classical system; some elementary examples and original discoveries by Schrödinger and Heisenberg; generalized coordinates; linear systems and the quantization of the electromagnetic field; and quantum-statistical mechanics.

The final section on group theory and quantum mechanics of the atom explores basic notions in the theory of group representations; perturbations and the group theoretical classification of eigenvalues; spherical symmetry and spin; and the n-electron atom and the Pauli exclusion principle.

Containing a careful selection of standard and timely topics, the Pocket Book of Integrals and Mathematical Formulas, Fourth Edition presents many numerical and statistical tables, scores of worked examples, and the most useful mathematical formulas for engineering and scientific applications. This fourth edition of a bestseller provides even more comprehensive coverage with the inclusion of several additional topics, all while maintaining its accessible, clear style and handy size.

New to the Fourth Edition

• An expanded chapter on series that covers many fascinating properties of the natural numbers that follow from number theory

• New applications such as geostationary satellite orbits and drug kinetics

• An expanded statistics section that discusses nonlinear regression as well as the normal approximation of the binomial distribution

• Revised format of the table of integrals for easier use of the forms and functions

Easy to Use on the Go

The book addresses a range of areas, from elementary algebra, geometry, matrices, and trigonometry to calculus, vector analysis, differential equations, and statistics. Featuring a convenient, portable size, it is sure to remain in the pockets or on the desks of all who use mathematical formulas and tables of integrals and derivatives.

An Instructor's Manual presenting detailed solutions to all the problems in the book is available online.

Those familiar with mathematics texts will note the fine illustrations throughout and large number of problems offered at the chapter ends. An answer section is provided. Students weary of plodding mathematical prose will find Professor Flanigan's style as refreshing and stimulating as his approach.

New to the Second Edition

Moves the computer codes to Computer Labs at the end of each chapter, which gives professors flexibility in using the technology Covers linear systems in their entirety before addressing applications to nonlinear systems Incorporates the latest versions of MATLAB, Maple, and Mathematica Includes new sections on complex variables, the exponential response formula for solving nonhomogeneous equations, forced vibrations, and nondimensionalization Highlights new applications and modeling in many fields Presents exercise sets that progress in difficulty Contains color graphs to help students better understand crucial concepts in ODEs Provides updated and expanded projects in each chapter

Suitable for a first undergraduate course, the book includes all the basics necessary to prepare students for their future studies in mathematics, engineering, and the sciences. It presents the syntax from MATLAB, Maple, and Mathematica to give students a better grasp of the theory and gain more insight into real-world problems. Along with covering traditional topics, the text describes a number of modern topics, such as direction fields, phase lines, the Runge-Kutta method, and epidemiological and ecological models. It also explains concepts from linear algebra so that students acquire a thorough understanding of differential equations.

It will help you cut study time, hone problem-solving skills, and achieve your personal best on exams!

Students love Schaum's Solved Problem Guides because they produce results. Each year, thousands of students improve their test scores and final grades with these indispensable guides. Get the edge on your classmates. Use Schaum's!

If you don't have a lot of time but want to excel in class, use this book to:

Brush up before tests Study quickly and more effectively Learn the best strategies for solving tough problems in step-by-step detail Review what you've learned in class by solving thousands of relevant problems that test your skillCompatible with any classroom text, Schaum's Solved Problem Guides let you practice at your own pace and remind you of all the important problem-solving techniques you need to remember--fast! And Schaum's are so complete, they're perfect for preparing for graduate or professional exams.

Inside you will find:

2,000 solved problems with complete solutions--the largest selection of solved problems yet published on this subject An index to help you quickly locate the types of problems you want to solve Problems like those you'll find on your exams Techniques for choosing the correct approach to problems Guidance toward the quickest, most efficient solutionsIf you want top grades and thorough understanding of discrete mathematics, this powerful study tool is the best tutor you can have!

Since many abstractions and generalizations originate with the real line, the author has made it the unifying theme of the text, constructing the real number system from the point of view of a Cauchy sequence (a step which Dr. Sprecher feels is essential to learn what the real number system is).

The material covered in Elements of Real Analysis should be accessible to those who have completed a course in calculus. To help give students a sound footing, Part One of the text reviews the fundamental concepts of sets and functions and the rational numbers. Part Two explores the real line in terms of the real number system, sequences and series of number and the structure of point sets. Part Three examines the functions of a real variable in terms of continuity, differentiability, spaces of continuous functions, measure and integration, and the Fourier series.

An especially valuable feature of the book is the exercises which follow each section. There are over five hundred, ranging from the simple to the highly difficult, each focusing on a concept previously introduced.

"This book covers many interesting topics not usually covered in a present day undergraduate course, as well as certain basic topics such as the development of the calculus and the solution of polynomial equations. The fact that the topics are introduced in their historical contexts will enable students to better appreciate and understand the mathematical ideas involved...If one constructs a list of topics central to a history course, then they would closely resemble those chosen here."

(David Parrott, Australian Mathematical Society)

"The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community."

(European Mathematical Society)

"Since Stillwell treats many topics, most mathematicians will learn a lot from this book as well as they will find pleasant and rather clear expositions of custom materials. The book is accessible to students that have already experienced calculus, algebra and geometry and will give them a good account of how the different branches of mathematics interact."

(Denis Bonheure, Bulletin of the Belgian Society)

This third edition includes new chapters on simple groups and combinatorics, and new sections on several topics, including the Poincare conjecture. The book has also been enriched by added exercises.

Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent study will particularly appreciate the worked examples that appear throughout the text.

The first three chapters of the book address linear spaces, orthogonal functions, and the Fourier series. Chapter 4 introduces Legendre polynomials and Bessel functions, and Chapter 5 takes up heat and temperature. The concluding Chapter 6 explores waves and vibrations and harmonic analysis. Several topics not usually found in undergraduate texts are included, among them summability theory, generalized functions, and spherical harmonics.

Throughout the text are 570 exercises devised to encourage students to review what has been read and to apply the theory to specific problems. Those preparing for further study in functional analysis, abstract harmonic analysis, and quantum mechanics will find this book especially valuable for the rigorous preparation it provides. Professional engineers, physicists, and mathematicians seeking to extend their mathematical horizons will find it an invaluable reference as well.

Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

This Schaum's Outline gives you:

Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applicationsFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores!

Schaum's Outlines-Problem Solved.

The first part explores Markov processes and Brownian motion; the stochastic integral and stochastic differential equations; elliptic and parabolic partial differential equations and their relations to stochastic differential equations; the Cameron-Martin-Girsanov theorem; and asymptotic estimates for solutions. The section concludes with a look at recurrent and transient solutions.

Volume 2 begins with an overview of auxiliary results in partial differential equations, followed by chapters on nonattainability, stability and spiraling of solutions; the Dirichlet problem for degenerate elliptic equations; small random perturbations of dynamical systems; and fundamental solutions of degenerate parabolic equations. Final chapters examine stopping time problems and stochastic games and stochastic differential games. Problems appear at the end of each chapter, and a familiarity with elementary probability is the sole prerequisite.

- Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis.

This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.

This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory.

This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include:

* Revised material on the n-dimensional Lebesgue integral.

* An improved proof of Tychonoff's theorem.

* Expanded material on Fourier analysis.

* A newly written chapter devoted to distributions and differential equations.

* Updated material on Hausdorff dimension and fractal dimension.

The Second Edition is completely revised and provides additional review material on linear algebra as well as complete coverage of elementary linear programming. Other topics covered include: the Duality Theorem; transportation problems; the assignment problem; and the maximal flow problem. New figures and exercises are provided and the authors have updated all computer applications.

More review material on linear algebraElementary linear programming covered more efficientlyPresentation improved, especially for the duality theorem, transportation problems, the assignment problem, and the maximal flow problemNew figures and exercisesComputer applications updatedNew guide to inexpensive linear programming software for personal computers

Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure.

The book is arranged in four sections, devoted to realizing the universal principle force equals curvature:

Part I: The Euclidean Manifold as a Paradigm

Part II: Ariadne's Thread in Gauge Theory

Part III: Einstein's Theory of Special Relativity

Part IV: Ariadne's Thread in Cohomology

For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum.

Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

In order to work with varying levels of engineering and physics research, it is important to have a firm understanding of key mathematical concepts such as advanced calculus, differential equations, complex analysis, and introductory mathematical physics. Essentials of Mathematical Methods in Science and Engineering provides a comprehensive introduction to these methods under one cover, outlining basic mathematical skills while also encouraging students and practitioners to develop new, interdisciplinary approaches to their research.

The book begins with core topics from various branches of mathematics such as limits, integrals, and inverse functions. Subsequent chapters delve into the analytical tools that are commonly used in scientific and engineering studies, including vector analysis, generalized coordinates, determinants and matrices, linear algebra, complex numbers, complex analysis, and Fourier series. The author provides an extensive chapter on probability theory with applications to statistical mechanics and thermodynamics that complements the following chapter on information theory, which contains coverage of Shannon's theory, decision theory, game theory, and quantum information theory. A comprehensive list of references facilitates further exploration of these topics.

Throughout the book, numerous examples and exercises reinforce the presented concepts and techniques. In addition, the book is in a modular format, so each chapter covers its subject thoroughly and can be read independently. This structure affords flexibility for individualizing courses and teaching.

Providing a solid foundation and overview of the various mathematical methods and applications in multidisciplinary research, Essentials of Mathematical Methods in Science and Engineering is an excellent text for courses in physics, science, mathematics, and engineering at the upper-undergraduate and graduate levels. It also serves as a useful reference for scientists and engineers who would like a practical review of mathematical methods.

Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, semi-Markov processes, and queuing processes. Each chapter opens with an illustrative case study, and comprehensive presentations include formulation of models, determination of parameters, analysis, and interpretation of results. Programming language–independent algorithms appear for all simulation and numerical procedures.