An accessible and fun guide to the essential tools of econometric research

Applied econometrics, known to aficionados as 'metrics, is the original data science. 'Metrics encompasses the statistical methods economists use to untangle cause and effect in human affairs. Through accessible discussion and with a dose of kung fu–themed humor, Mastering 'Metrics presents the essential tools of econometric research and demonstrates why econometrics is exciting and useful.

The five most valuable econometric methods, or what the authors call the Furious Five--random assignment, regression, instrumental variables, regression discontinuity designs, and differences in differences--are illustrated through well-crafted real-world examples (vetted for awesomeness by Kung Fu Panda's Jade Palace). Does health insurance make you healthier? Randomized experiments provide answers. Are expensive private colleges and selective public high schools better than more pedestrian institutions? Regression analysis and a regression discontinuity design reveal the surprising truth. When private banks teeter, and depositors take their money and run, should central banks step in to save them? Differences-in-differences analysis of a Depression-era banking crisis offers a response. Could arresting O. J. Simpson have saved his ex-wife's life? Instrumental variables methods instruct law enforcement authorities in how best to respond to domestic abuse.

Wielding econometric tools with skill and confidence, Mastering 'Metrics uses data and statistics to illuminate the path from cause to effect.
  • Shows why econometrics is important
  • Explains econometric research through humorous and accessible discussion
  • Outlines empirical methods central to modern econometric practice
  • Works through interesting and relevant real-world examples
Hayashi's Econometrics promises to be the next great synthesis of modern econometrics. It introduces first year Ph.D. students to standard graduate econometrics material from a modern perspective. It covers all the standard material necessary for understanding the principal techniques of econometrics from ordinary least squares through cointegration. The book is also distinctive in developing both time-series and cross-section analysis fully, giving the reader a unified framework for understanding and integrating results.

Econometrics has many useful features and covers all the important topics in econometrics in a succinct manner. All the estimation techniques that could possibly be taught in a first-year graduate course, except maximum likelihood, are treated as special cases of GMM (generalized methods of moments). Maximum likelihood estimators for a variety of models (such as probit and tobit) are collected in a separate chapter. This arrangement enables students to learn various estimation techniques in an efficient manner. Eight of the ten chapters include a serious empirical application drawn from labor economics, industrial organization, domestic and international finance, and macroeconomics. These empirical exercises at the end of each chapter provide students a hands-on experience applying the techniques covered in the chapter. The exposition is rigorous yet accessible to students who have a working knowledge of very basic linear algebra and probability theory. All the results are stated as propositions, so that students can see the points of the discussion and also the conditions under which those results hold. Most propositions are proved in the text.

For those who intend to write a thesis on applied topics, the empirical applications of the book are a good way to learn how to conduct empirical research. For the theoretically inclined, the no-compromise treatment of the basic techniques is a good preparation for more advanced theory courses.
Provides statistical tools and techniques needed to understand today's financial markets

The Second Edition of this critically acclaimed text provides a comprehensive and systematic introduction to financial econometric models and their applications in modeling and predicting financial time series data. This latest edition continues to emphasize empirical financial data and focuses on real-world examples. Following this approach, readers will master key aspects of financial time series, including volatility modeling, neural network applications, market microstructure and high-frequency financial data, continuous-time models and Ito's Lemma, Value at Risk, multiple returns analysis, financial factor models, and econometric modeling via computation-intensive methods.

The author begins with the basic characteristics of financial time series data, setting the foundation for the three main topics:

  • Analysis and application of univariate financial time series
  • Return series of multiple assets
  • Bayesian inference in finance methods

This new edition is a thoroughly revised and updated text, including the addition of S-Plus® commands and illustrations. Exercises have been thoroughly updated and expanded and include the most current data, providing readers with more opportunities to put the models and methods into practice. Among the new material added to the text, readers will find:

  • Consistent covariance estimation under heteroscedasticity and serial correlation
  • Alternative approaches to volatility modeling
  • Financial factor models
  • State-space models
  • Kalman filtering
  • Estimation of stochastic diffusion models

The tools provided in this text aid readers in developing a deeper understanding of financial markets through firsthand experience in working with financial data. This is an ideal textbook for MBA students as well as a reference for researchers and professionals in business and finance.

©2021 GoogleSite Terms of ServicePrivacyDevelopersAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.