## Similar

A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory.

In the twenty years since the first edition of this book appeared, the ideas and techniques of nonlinear dynamics and chaos have found application to such exciting new fields as systems biology, evolutionary game theory, and sociophysics. This second edition includes new exercises on these cutting-edge developments, on topics as varied as the curiosities of visual perception and the tumultuous love dynamics in Gone With the Wind.

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.

Math textbooks can be as baffling as the subject they're teaching. Not anymore. The best-selling author of The Complete Idiot's Guide® to Calculus has taken what appears to be a typical calculus workbook, chock full of solved calculus problems, and made legible notes in the margins, adding missing steps and simplifying solutions. Finally, everything is made perfectly clear. Students will be prepared to solve those obscure problems that were never discussed in class but always seem to find their way onto exams.

--Includes 1,000 problems with comprehensive solutions

--Annotated notes throughout the text clarify what's being asked in each problem and fill in missing steps

--Kelley is a former award-winning calculus teacher

Fortunately for you, there's Schaum's.

More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

This Schaum's Outline gives you

1,370 fully solved problems Complete review of all course fundamentals Clear, concise explanations of all Advanced Calculus conceptsFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!

Topics include: Numbers; Sequences; Functions, Limits, and Continuity; Derivatives; Integrals; Partial Derivatives; Vectors; Applications of Partial Derivatives; Multiple Integrals; Line Integrals, Surface Integrals, and Integral Theorems; Infinite Series; Improper Integrals; Fourier Series; Fourier Integrals; Gamma and Beta Functions; and Functions of a Complex Variable

Schaum's Outlines--Problem Solved.

1001 Calculus Practice Problems For Dummies takes you beyond the instruction and guidance offered in Calculus For Dummies, giving you 1001 opportunities to practice solving problems from the major topics in your calculus course. Plus, an online component provides you with a collection of calculus problems presented in multiple-choice format to further help you test your skills as you go.

Gives you a chance to practice and reinforce the skills you learn in your calculus course Helps you refine your understanding of calculus Practice problems with answer explanations that detail every step of every problemThe practice problems in 1001 Calculus Practice Problems For Dummies range in areas of difficulty and style, providing you with the practice help you need to score high at exam time.

Want to "know it ALL" when it comes to pre-calculus? This book gives you the expert, one-on-one instruction you need, whether you're new to pre-calculus or you're looking to ramp up your skills. Providing easy-to-understand concepts and thoroughly explained exercises, math whiz Stan Gibilisco serves as your own private tutor--without the expense! His clear, friendly guidance helps you tackle the concepts and problems that confuse you the most and work through them at your own pace.

Train your brain with ease!

Pre-Calculus Know-It-ALL features:

Checkpoints to help you track your knowledge and skill level Problem/solution pairs and chapter-ending quizzes to reinforce learning Fully explained answers to all practice exercises A multiple-choice exam to prepare you for standardized tests "Extra Credit" and "Challenge" problems to stretch your mindStan's expert guidance gives you the know-how to:

Calculate distance in Cartesian two-and three-space Perform vector multiplication Work with cylindrical and spherical coordinates Understand relations and functions Learn the properties of conic sections Graph exponential, logarithmic, and trigonometric curves Define curves with parametric equations Work with sequences, series, and limits Take college entrance examinations with confidence And much more!Want to "know it ALL" when it comes to calculus? This book gives you the expert, one-on-one instruction you need, whether you're new to calculus or you're looking to ramp up your skills. Providing easy-to-understand concepts and thoroughly explained exercises, math whiz Stan Gibilisco serves as your own private tutor--without the expense! His clear, friendly guidance helps you tackle the concepts and problems that confuse you the most and work through them at your own pace.

Train your brain with ease! Calculus Know-It-ALL features:

Checkpoints to help you track your knowledge and skill level Problem/solution pairs and chapter-ending quizzes to reinforce learning Fully explained answers to all practice exercises A multiple-choice exam to prepare you for standardized tests "Extra Credit" and "Challenge" problems to stretch your mindStan's expert guidance gives you the know-how to:

Understand mappings, relations, and functions Calculate limits and determine continuity Differentiate and integrate functions Analyze graphs using first and second derivatives Define and evaluate inverse functions Use specialized integration techniques Determine arc lengths, surface areas, and solid volumes Work with multivariable functions Take college entrance examinations with confidence And much more!The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several variables: the space of several variables and continuous functions, differentiation, multiple integrals, and line and surface integrals, concluding with a selection of related topics. Complete solutions to the problems appear at the end of the text.

Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

Review from the first edition:

"This book is intended for the student who has a good, but naïve, understanding of elementary calculus and now wishes to gain a thorough understanding of a few basic concepts in analysis.... The author has tried to write in an informal but precise style, stressing motivation and methods of proof, and ... has succeeded admirably."

—MATHEMATICAL REVIEWS

But while the importance of the calculus and mathematical analysis ― the core of modern mathematics ― cannot be overemphasized, the value of this first comprehensive critical history of the calculus goes far beyond the subject matter. This book will fully counteract the impression of laymen, and of many mathematicians, that the great achievements of mathematics were formulated from the beginning in final form. It will give readers a sense of mathematics not as a technique, but as a habit of mind, and serve to bridge the gap between the sciences and the humanities. It will also make abundantly clear the modern understanding of mathematics by showing in detail how the concepts of the calculus gradually changed from the Greek view of the reality and immanence of mathematics to the revised concept of mathematical rigor developed by the great 19th century mathematicians, which held that any premises were valid so long as they were consistent with one another. It will make clear the ideas contributed by Zeno, Plato, Pythagoras, Eudoxus, the Arabic and Scholastic mathematicians, Newton, Leibnitz, Taylor, Descartes, Euler, Lagrange, Cantor, Weierstrass, and many others in the long passage from the Greek "method of exhaustion" and Zeno's paradoxes to the modern concept of the limit independent of sense experience; and illuminate not only the methods of mathematical discovery, but the foundations of mathematical thought as well.

All of the material in this user-friendly study guide has been proven to get results. The book arose from Adrian Banner's popular calculus review course at Princeton University, which he developed especially for students who are motivated to earn A's but get only average grades on exams. The complete course will be available for free on the Web in a series of videotaped lectures. This study guide works as a supplement to any single-variable calculus course or textbook. Coupled with a selection of exercises, the book can also be used as a textbook in its own right. The style is informal, non-intimidating, and even entertaining, without sacrificing comprehensiveness. The author elaborates standard course material with scores of detailed examples that treat the reader to an "inner monologue"--the train of thought students should be following in order to solve the problem--providing the necessary reasoning as well as the solution. The book's emphasis is on building problem-solving skills. Examples range from easy to difficult and illustrate the in-depth presentation of theory.

The Calculus Lifesaver combines ease of use and readability with the depth of content and mathematical rigor of the best calculus textbooks. It is an indispensable volume for any student seeking to master calculus.

Serves as a companion to any single-variable calculus textbook Informal, entertaining, and not intimidating Informative videos that follow the book--a full forty-eight hours of Banner's Princeton calculus-review course--is available at Adrian Banner lectures More than 475 examples (ranging from easy to hard) provide step-by-step reasoning Theorems and methods justified and connections made to actual practice Difficult topics such as improper integrals and infinite series covered in detail Tried and tested by students taking freshman calculusTensor Calculus contains eight chapters. The first four deal with the basic concepts of tensors, Riemannian spaces, Riemannian curvature, and spaces of constant curvature. The next three chapters are concerned with applications to classical dynamics, hydrodynamics, elasticity, electromagnetic radiation, and the theorems of Stokes and Green. In the final chapter, an introduction is given to non-Riemannian spaces including such subjects as affine, Weyl, and projective spaces. There are two appendixes which discuss the reduction of a quadratic form and multiple integration. At the conclusion of each chapter a summary of the most important formulas and a set of exercises are given. More exercises are scattered throughout the text. The special and general theory of relativity is briefly discussed where applicable.

It will help you cut study time, hone problem-solving skills, and achieve your personal best on exams!

Students love Schaum's Solved Problem Guides because they produce results. Each year, thousands of students improve their test scores and final grades with these indispensable guides. Get the edge on your classmates. Use Schaum's!

If you don't have a lot of time but want to excel in class, use this book to:

Brush up before tests Study quickly and more effectively Learn the best strategies for solving tough problems in step-by-step detail Review what you've learned in class by solving thousands of relevant problems that test your skillCompatible with any classroom text, Schaum's Solved Problem Guides let you practice at your own pace and remind you of all the important problem-solving techniques you need to remember--fast! And Schaum's are so complete, they're perfect for preparing for graduate or professional exams.

Inside you will find:

2,000 solved problems with complete solutions--the largest selection of solved problems yet published on this subject An index to help you quickly locate the types of problems you want to solve Problems like those you'll find on your exams Techniques for choosing the correct approach to problems Guidance toward the quickest, most efficient solutionsIf you want top grades and thorough understanding of discrete mathematics, this powerful study tool is the best tutor you can have!

"This book covers many interesting topics not usually covered in a present day undergraduate course, as well as certain basic topics such as the development of the calculus and the solution of polynomial equations. The fact that the topics are introduced in their historical contexts will enable students to better appreciate and understand the mathematical ideas involved...If one constructs a list of topics central to a history course, then they would closely resemble those chosen here."

(David Parrott, Australian Mathematical Society)

"The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community."

(European Mathematical Society)

"Since Stillwell treats many topics, most mathematicians will learn a lot from this book as well as they will find pleasant and rather clear expositions of custom materials. The book is accessible to students that have already experienced calculus, algebra and geometry and will give them a good account of how the different branches of mathematics interact."

(Denis Bonheure, Bulletin of the Belgian Society)

This third edition includes new chapters on simple groups and combinatorics, and new sections on several topics, including the Poincare conjecture. The book has also been enriched by added exercises.

"The main object of this book is to dispel the fear of mathematics," declares author W. W. Sawyer, adding that "Many people regard mathematicians as a race apart, possessed of almost supernatural powers. While this is very flattering for successful mathematicians, it is very bad for those who, for one reason or another, are attempting to learn the subject." Now retired, Sawyer won international renown for his innovative teaching methods, which he used at colleges in England and Scotland as well as Africa, New Zealand, and North America. His insights into the pleasures and practicalities of mathematics will appeal to readers of all backgrounds.

The first five chapters consist of a systematic development of many of the important properties of the real number system, plus detailed treatment of such concepts as mappings, sequences, limits, and continuity. The sixth and final chapter discusses metric spaces and generalizes many of the earlier concepts and results involving arbitrary metric spaces.

An index of axioms and key theorems appears at the end of the book, and more than 300 problems amplify and supplement the material within the text. Geared toward students who have taken several semesters of basic calculus, this volume is an ideal prerequisite for mathematics majors preparing for a two-semester course in advanced calculus.

Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

This Schaum's Outline gives you:

Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applicationsFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores!

Schaum's Outlines-Problem Solved.

The normal physical laws like, transport theory, electrodynamics, equation of motions, elasticity, viscosity, and several others of are based on ‘ordinary’ calculus. In this book these physical laws are generalized in fractional calculus contexts; taking, heterogeneity effect in transport background, the space having traps or islands, irregular distribution of charges, non-ideal spring with mass connected to a pointless-mass ball, material behaving with viscous as well as elastic properties, system relaxation with and without memory, physics of random delay in computer network; and several others; mapping the reality of nature closely. The concept of fractional and complex order differentiation and integration are elaborated mathematically, physically and geometrically with examples. The practical utility of local fractional differentiation for enhancing the character of singularity at phase transition or characterizing the irregularity measure of response function is deliberated. Practical results of viscoelastic experiments, fractional order controls experiments, design of fractional controller and practical circuit synthesis for fractional order elements are elaborated in this book. The book also maps theory of classical integer order differential equations to fractional calculus contexts, and deals in details with conflicting and demanding initialization issues, required in classical techniques. The book presents a modern approach to solve the ‘solvable’ system of fractional and other differential equations, linear, non-linear; without perturbation or transformations, but by applying physical principle of action-and-opposite-reaction, giving ‘approximately exact’ series solutions.

Historically, Sir Isaac Newton and Gottfried Wihelm Leibniz independently discovered calculus in the middle of the 17th century. In recognition to this remarkable discovery, J.von Neumann remarked, “...the calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more equivocally than anything else the inception of modern mathematical analysis which is logical development, still constitute the greatest technical advance in exact thinking.”

This XXI century has thus started to ‘think-exactly’ for advancement in science & technology by growing application of fractional calculus, and this century has started speaking the language which nature understands the best.

- Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis.

This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.

The principal aim of analysis of tensors is to investigate those relations which remain valid when we change from one coordinate system to another. This book on Tensors requires only a knowledge of elementary calculus, differential equations and classical mechanics as pre-requisites. It provides the readers with all the information about the tensors along with the derivation of all the tensorial relations/equations in a simple manner. The book also deals in detail with topics of importance to the study of special and general relativity and the geometry of differentiable manifolds with a crystal clear exposition. The concepts dealt within the book are well supported by a number of solved examples. A carefully selected set of unsolved problems is also given at the end of each chapter, and the answers and hints for the solution of these problems are given at the end of the book. The applications of tensors to the fields of differential geometry, relativity, cosmology and electromagnetism is another attraction of the present book.

This book is intended to serve as text for postgraduate students of mathematics, physics and engineering. It is ideally suited for both students and teachers who are engaged in research in General Theory of Relativity and Differential Geometry.

The approach begins with sets and functions and advances to Lebesgue measure, including considerations of measurable sets, sets of measure zero, and Borel sets and nonmeasurable sets. A two-part exploration of the integral covers measurable functions, convergence theorems, convergence in mean, Fourier theory, and other topics. A chapter on calculus examines change of variables, differentiation of integrals, and integration of derivatives and by parts. The text concludes with a consideration of more general measures, including absolute continuity and convolution products.

The contributors are Jean Bourgain, Luis Caffarelli, Michael Christ, Guy David, Charles Fefferman, Alexandru D. Ionescu, David Jerison, Carlos Kenig, Sergiu Klainerman, Loredana Lanzani, Sanghyuk Lee, Lionel Levine, Akos Magyar, Detlef Müller, Camil Muscalu, Alexander Nagel, D. H. Phong, Malabika Pramanik, Andrew S. Raich, Fulvio Ricci, Keith M. Rogers, Andreas Seeger, Scott Sheffield, Luis Silvestre, Christopher D. Sogge, Jacob Sturm, Terence Tao, Christoph Thiele, Stephen Wainger, and Steven Zelditch.

Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Learn and review on the go!

Use Quick Review Calculus Notes to help you learn or brush up on the

subject quickly. You can use the review notes as a reference, to understand the

subject better and improve your grades.

Perfect for high school and college students and anyone

interested in Calculus. Prepare for

the AP Calculus and other similar standardized tests by using

this quick fact study guide.

The Second Edition maintained the accessibility of the first, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis was placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard.

This revision of the Second Edition provides a thorough update of commands for the symbolic computation programs Mathematica or Maple, as well as additional computer exercises. As with the Second Edition, this material supplements the content but no computer skill is necessary to take full advantage of this comprehensive text.

Over 36,000 copies sold worldwideAccessible, practical yet rigorous approach to a complex topic--also suitable for self-studyExtensive update of appendices on Mathematica and Maple software packagesThorough streamlining of second edition's numbering systemFuller information on solutions to odd-numbered problemsAdditional exercises and hints guide students in using the latest computer modeling toolsKey features of Putnam and Beyond

* Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants.

* Each chapter systematically presents a single subject within which problems are clustered in every section according to the specific topic.

* The exposition is driven by more than 1100 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors.

* Complete solutions to all problems are given at the end of the book. The source, author, and historical background are cited whenever possible.

This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for self-study by undergraduate and graduate students, as well as teachers and researchers in the physical sciences who wish to to expand their mathematical horizons.

The authors begin with Vilhelm Bjerknes, a Norwegian physicist and meteorologist who in 1904 came up with a method now known as numerical weather prediction. Although his proposed calculations could not be implemented without computers, his early attempts, along with those of Lewis Fry Richardson, marked a turning point in atmospheric science. Roulstone and Norbury describe the discovery of chaos theory's butterfly effect, in which tiny variations in initial conditions produce large variations in the long-term behavior of a system--dashing the hopes of perfect predictability for weather patterns. They explore how weather forecasters today formulate their ideas through state-of-the-art mathematics, taking into account limitations to predictability. Millions of variables--known, unknown, and approximate--as well as billions of calculations, are involved in every forecast, producing informative and fascinating modern computer simulations of the Earth system.

Accessible and timely, Invisible in the Storm explains the crucial role of mathematics in understanding the ever-changing weather.

Some images inside the book are unavailable due to digital copyright restrictions.

For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.

There is a selected solutions manual for instructors for the new edition.

Fortunately, there's Schaum's. This all-in-one-package includes more than 1,100 fully solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 30 detailed videos featuring Math instructors who explain how to solve the most commonly tested problems--it's just like having your own virtual tutor! You’ll find everything you need to build confidence, skills, and knowledge for the highest score possible.

More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

This Schaum's Outline gives you

1,105 fully solved problems Concise explanations of all calculus concepts Expert tips on using the graphing calculatorFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!

This book, unlike other introductory texts in differential geometry, develops the architecture necessary to introduce symplectic and contact geometry alongside its Riemannian cousin. The main goal of this book is to bring the undergraduate student who already has a solid foundation in the standard mathematics curriculum into contact with the beauty of higher mathematics. In particular, the presentation here emphasizes the consequences of a definition and the careful use of examples and constructions in order to explore those consequences.

This volume contains the invited contributions from talks delivered in the Fall 2011 series of the Seminar on Mathematical Sciences and Applications 2011 at Virginia State University. Contributors to this volume, who are leading researchers in their fields, present their work in a way to generate genuine interdisciplinary interaction. Thus all articles therein are selective, self-contained, and are pedagogically exposed and help to foster student interest in science, technology, engineering and mathematics and to stimulate graduate and undergraduate research and collaboration between researchers in different areas.

This work is suitable for both students and researchers in a variety of interdisciplinary fields namely, mathematics as it applies to engineering, physical-chemistry, nanotechnology, life sciences, computer science, finance, economics, and game theory.

The textbook covers topics such as fair division, graph coloring problems, evasiveness of graph properties, and embedding problems from discrete geometry. The text contains a large number of figures that support the understanding of concepts and proofs. In many cases several alternative proofs for the same result are given, and each chapter ends with a series of exercises. The extensive appendix makes the book completely self-contained.

The textbook is well suited for advanced undergraduate or beginning graduate mathematics students. Previous knowledge in topology or graph theory is helpful but not necessary. The text may be used as a basis for a one- or two-semester course as well as a supplementary text for a topology or combinatorics class.

Initial chapters cover functions and graphs, straight lines and conic sections, new coordinate systems, the derivative, using the derivative, integration and using the integral. The last four chapters focus on derivatives of transcendental functions, patterns for integrations, series expansion of functions, and differential equations.

Throughout, the writing style is clear, readable and informal. Examples are abundant and have complete worked solutions. Practice problems appear in the body of the text in each section; these are relatively easy and are intended to be worked by the student as soon as they are encountered. Each new type of example in the text is followed by a practice problem that allows the student to gain immediate reinforcement in applying the problem-solving technique illustrated by the example. Answers to all practice problems are given at the back of the book, many with worked-out solutions.

Other learning aids include the division of complex problem-solving processes into a series of step-by-step tasks, numerous exercises at the end of each section and a Status Check at the end of each chapter that helps students review what they have learned. Additional review exercises and a glossary, with definitions and page references, round out the book.

About the Book

With more than 1,000,000 copies sold, Practice Makes Perfect has established itself as a reliable practical workbook series in the language-learning category. Now, with Practice Makes Perfect: Calculus, students will enjoy the same clear, concise approach and extensive exercises to key fields they've come to expect from the series--but now within mathematics.

Practice Makes Perfect: Calculus is not focused on any particular test or exam, but complementary to most calculus curricula. Because of this approach, the book can be used by struggling students needing extra help, readers who need to firm up skills for an exam, or those who are returning to the subject years after they first studied it. Its all-encompassing approach will appeal to both U.S. and international students.

Features

More than 500 exercises and answers covering all aspects of calculus. Successful series: "Practice Makes Perfect" has sales of 1,000,000 copies in the language category--now applied to mathematics. Large trim allows clear presentation of worked problems, exercises, and explained answers.For most nonscientists, holograms are an intriguing — if not mesmerizing — mystery. How are these seemingly magical images created and what makes them appear to be three-dimensional? This fascinating book not only offers the answers to these and other questions about holography — it even gives step-by-step instructions so that readers can manufacture their own holograms.

Written in a lively, stimulating style, The Complete Book of Holograms provides a thorough, easy-to-understand explanation of the theory and science of making holograms. The physical basis of holography is introduced through a discussion of interference patterns in water waves and in light waves. Without complicated mathematics or physics, the authors explain the two models of holography — the geometric and the more complex zone-plate model — and the several different types of holograms, including transmission, reflection, phase, projection, rainbow, multiplex, and others. They explain how to copy holograms; describe special techniques and applications; and discuss potential uses for holography, including the use of holograms in movies, television, and data storage. They also present some basic setups for making holograms and show readers how to create their own — using little more than simple photographic equipment and an inexpensive laser. Two appendixes give advice on laser safety and list sources of material and further information.

Proof in Geometry, the first in this two-part compilation, discusses the construction of geometric proofs and presents criteria useful for determining whether a proof is logically correct and whether it actually constitutes proof. It features sample invalid proofs, in which the errors are explained and corrected.

Mistakes in Geometric Proofs, the second book in this compilation, consists chiefly of examples of faulty proofs. Some illustrate mistakes in reasoning students might be likely to make, and others are classic sophisms. Chapters 1 and 3 present the faulty proofs, and chapters 2 and 4 offer comprehensive analyses of the errors.