Genetic engineering

There is an urgent need for guidelines for monitoring of genetically modified higher plants, GMHP. Biotech crops are now cultivated in large scale in North America and elsewhere. In Europe, new genetically modified (GM) products will probably be placed on the market soon and made available of any negative ef for cultivation in the field. Monitoring and surveillance programs for detection fects to the environment must be designed and ready when these crops are released. This also corre sponds to the current intentions made by the European Commission to include monitoring in current biotechnology regulation. Monitoring of changes in biological systems is different from other types of environmental monitoring, such as monitoring fate of chemical pollutants, by focusing primarily on organism survival and organism interactions instead of physical and chemical parameters. The difficulties involved in monitoring biological systems are great, due to the complex interactions between organisms and the variability in responses. Problems concerning spatial and temporal pa rameter variation increase the difficulties, but may be remedied somewhat by the use of "baselines". These and many other questions are discussed in the present book with the aim of presenting practi cal solutions to the needs of GMHP monitoring. A project was initiated in 1998 to produce a book with guidelines for monitoring and surveillance of GMHP. In two earlier books, compilations of current test methods for risk assessment of GMHP were presented (Kjellsson & Simonsen 1994, Kjellsson et al. 1997).
Genetic analysis of microbial systems provided us with the foundation for un derstanding gene structure, expression, and regulation. It was long felt that the ability to generate mutants and conduct genetic studies in mammalian systems would prove to be equally useful. However, genetic analysis based on sexual systems is difficult in mammals because of the long generation times and the inability to perform controlled matings. As a result, genetic analysis of mam malian systems had to await the development of parasexual systems. This book is an attempt to bring together descriptions of a number of these parasexual systems. A common theme of all the parasexual systems is the transfer of genetic information from a defined source into a specific cell type. This volume deals with a number of methods of gene transfer into mammalian cells. The early methods of gene transfer involved transfer of relatively large amounts of genetic information. These include somatic cell hybridization, microcell fusion, and chromosome transfer, which constitute the first part of this book. Each of these methods has already proven to be of enormous value in arriving at a genetic understanding of the mammalian genome. Development of recombinant DNA methods, and the ability to introduce purified DNA into mammalian cells, has had a significant impact on our ability to dissect important aspects of mammalian gene expression and regulation. The second part of this book deals with gene transfer systems involving defined nucleic acid sequences.
Winner of 2014 AAAS/Subaru SB&F Prize for Best Young Adult Science Book
Longlisted for the PEN/E.O. Wilson Literary Science Writing Award
One of Nature's Summer Book Picks
One of Publishers Weekly's Top Ten Spring 2013 Science Books

For centuries, we've toyed with our creature companions, breeding dogs that herd and hunt, housecats that look like tigers, and teacup pigs that fit snugly in our handbags. But what happens when we take animal alteration a step further, engineering a cat that glows green under ultraviolet light or cloning the beloved family Labrador? Science has given us a whole new toolbox for tinkering with life. How are we using it?

In Frankenstein's Cat, the journalist Emily Anthes takes us from petri dish to pet store as she explores how biotechnology is shaping the future of our furry and feathered friends. As she ventures from bucolic barnyards to a "frozen zoo" where scientists are storing DNA from the planet's most exotic creatures, she discovers how we can use cloning to protect endangered species, craft prosthetics to save injured animals, and employ genetic engineering to supply farms with disease-resistant livestock. Along the way, we meet some of the animals that are ushering in this astonishing age of enhancement, including sensor-wearing seals, cyborg beetles, a bionic bulldog, and the world's first cloned cat.

Through her encounters with scientists, conservationists, ethicists, and entrepreneurs, Anthes reveals that while some of our interventions may be trivial (behold: the GloFish), others could improve the lives of many species-including our own. So what does biotechnology really mean for the world's wild things? And what do our brave new beasts tell us about ourselves?

With keen insight and her trademark spunk, Anthes highlights both the peril and the promise of our scientific superpowers, taking us on an adventure into a world where our grandest science fiction fantasies are fast becoming reality.
The first book to look at all the issues involved in GM (genetically modified food) technology in a clear and dispassionate way. Alan McHughen surveys the technology that makes GM food possible, assesses the risk of health and environmental dangers and the regulatory and labelling processes in force to protect the consumer. Question and answer boxes and case histories, and the author's easy writing style make this an essential purchase for all those interested in the debate. - ;Are you concerned about fish genes in tomatoes? Worried that brazil nut genes in soybeans can result in potentially lethal allergic reactions? That rapeseed plants bred to be resistant to herbicides could become uncontrollable superweeds? You are not alone. The issue of genetically modified foods has fast become one of the most debated of recent years, with scientists and companies seeking to develop the technology on one side, and consumer groups and environmentalists on the other. However, in spite of the great heat generated by the debate, there is very little real information on the subject, either about the technologies in use or about the regulatory processes established to approve the processes and the products. This book sets out to explain, in clear and direct language, the technologies underlying so-called genetically modified food, and compares them with other "natural" methods of plant breeding and production. The author then looks at the safeguards in place from regulators around the world and asks whether these are sufficient. The question of labelling, held by some to be an obvious way out for concerned consumers, is examined, and the honesty and usefulness of some of these labels addressed. The book then looks at issues of real concern, particularly environmental issues, and ways in which a consumer can seek to avoid GMOs if they so choose. In each chapter, key topics are addressed through question and answer boxes. Real case histories illustrate the development and regulation of GMOs, and by the end of the book the reader will be able to make an informed choice about whether to support or challenge this technology, the products of which are increasingly pervasive. -
What is life?
Humans have been asking this question for thou­sands of years. But as technology has advanced and our understanding of biology has deepened, the answer has evolved. For decades, scientists have been exploring the limits of nature by modifying and manipulating DNA, cells and whole organisms to create new ones that could never have existed on their own.
In Creation, science writer Adam Rutherford explains how we are now radically exceeding the boundaries of evolution and engineering entirely novel creatures—from goats that produce spider silk in their milk to bacteria that excrete diesel to genetic circuits that identify and destroy cancer cells. As strange as some of these creations may sound, this new, synthetic biology is helping scientists develop radical solutions to some of the world’s most pressing crises—from food shortages to pandemic disease to climate change—and is paving the way for inventions once relegated to science fiction.
Meanwhile, these advances are shedding new light on the biggest mystery of all—how did life begin? We know that every creature on Earth came from a single cell, sparked into existence four billion years ago. And as we come closer and closer to understanding the ancient root that connects all living things, we may finally be able to achieve a second genesis—the creation of new life where none existed before.
Creation takes us on a journey four billion years in the making—from the very first cell to the ground-breaking biological inventions that will shape the future of our planet.
While European restaurants race to footnote menus, reassuring concerned gourmands that no genetically modified ingredients were used in the preparation of their food, starving populations around the world eagerly await the next harvest of scientifically improved crops. Mendel in the Kitchen provides a clear and balanced picture of this tangled, tricky (and very timely) topic.

Any farmer you talk to could tell you that we've been playing with the genetic makeup of our food for millennia, carefully coaxing nature to do our bidding. The practice officially dates back to Gregor Mendel-who was not a renowned scientist, but a 19th century Augustinian monk. Mendel spent many hours toiling in his garden, testing and cultivating more than 28,000 pea plants, selectively determining very specific characteristics of the peas that were produced, ultimately giving birth to the idea of heredity-and the now very common practice of artificially modifying our food.

But as science takes the helm, steering common field practices into the laboratory, the world is now keenly aware of how adept we have become at tinkering with nature-which in turn has produced a variety of questions. Are genetically modified foods really safe? Will the foods ultimately make us sick, perhaps in ways we can't even imagine? Isn't it genuinely dangerous to change the nature of nature itself?

Nina Fedoroff, a leading geneticist and recognized expert in biotechnology, answers these questions, and more. Addressing the fear and mistrust that is rapidly spreading, Federoff and her co-author, science writer Nancy Brown, weave a narrative rich in history, technology, and science to dispel myths and misunderstandings.

In the end, Fedoroff arues, plant biotechnology can help us to become better stewards of the earth while permitting us to feed ourselves and generations of children to come. Indeed, this new approach to agriculture holds the promise of being the most environmentally conservative way to increase our food supply.

In 2001 the Human Genome Project announced that it had successfully mapped the entire genetic content of human DNA. Scientists, politicians, theologians, and pundits speculated about what would follow, conjuring everything from nightmare scenarios of state-controlled eugenics to the hope of engineering disease-resistant newborns. As with debates surrounding stem-cell research, the seemingly endless possibilities of genetic engineering will continue to influence public opinion and policy into the foreseeable future.

Beyond Biotechnology: The Barren Promise of Genetic Engineering distinguishes between the hype and reality of this technology and explains the nuanced and delicate relationship between science and nature. Authors Craig Holdrege and Steve Talbott evaluate the current state of genetic science and examine its potential applications, particularly in agriculture and medicine, as well as the possible dangers. The authors show how the popular view of genetics does not include an understanding of the ways in which genes actually work together in organisms.

Simplistic and reductionist views of genes lead to unrealistic expectations and, ultimately, disappointment in the results that genetic engineering actually delivers. The authors explore new developments in genetics, from the discovery of "non-Darwinian" adaptative mutations in bacteria to evidence that suggests that organisms are far more than mere collections of genetically driven mechanisms. While examining these issues, the authors also answer vital questions that get to the essence of genetic interaction with human biology: Does DNA "manage" an organism any more than the organism manages its DNA? Should genetically engineered products be labeled as such? Do the methods of the genetic engineer resemble the centuries-old practices of animal husbandry?

Written for lay readers, Beyond Biotechnology is an accessible introduction to the complicated issues of genetic engineering and its potential applications. In the unexplored space between nature and laboratory, a new science is waiting to emerge. Technology-based social and environmental solutions will remain tenuous and at risk of reversal as long as our culture is alienated from the plants and animals on which all life depends.

©2021 GoogleSite Terms of ServicePrivacyDevelopersAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.