More related to statistics

Sample surveys provide data used by researchers in a large range of disciplines to analyze important relationships using well-established and widely used likelihood methods. The methods used to select samples often result in the sample differing in important ways from the target population and standard application of likelihood methods can lead to biased and inefficient estimates.

Maximum Likelihood Estimation for Sample Surveys presents an overview of likelihood methods for the analysis of sample survey data that account for the selection methods used, and includes all necessary background material on likelihood inference. It covers a range of data types, including multilevel data, and is illustrated by many worked examples using tractable and widely used models. It also discusses more advanced topics, such as combining data, non-response, and informative sampling.

The book presents and develops a likelihood approach for fitting models to sample survey data. It explores and explains how the approach works in tractable though widely used models for which we can make considerable analytic progress. For less tractable models numerical methods are ultimately needed to compute the score and information functions and to compute the maximum likelihood estimates of the model parameters. For these models, the book shows what has to be done conceptually to develop analyses to the point that numerical methods can be applied.

Designed for statisticians who are interested in the general theory of statistics, Maximum Likelihood Estimation for Sample Surveys is also aimed at statisticians focused on fitting models to sample survey data, as well as researchers who study relationships among variables and whose sources of data include surveys.

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book.

Statistical Reasoning for Everyday Life, Fourth Edition, provides students with a clear understanding of statistical concepts and ideas so they can become better critical thinkers and decision makers, whether they decide to start a business, plan for their financial future, or just watch the news. The authors bring statistics to life by applying statistical concepts to the real world situations, taken from news sources, the internet, and individual experiences.

Note: This is the standalone book

If you want the Book/Access Card you can order the ISBN below

ALERT: Before you purchase, check with your instructor or review your course syllabus to ensure that you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable. In addition, you may need a CourseID, provided by your instructor, to register for and use Pearson's MyLab & Mastering products.

NOTE: Make sure to use the dashes shown on the Access Card Code when entering the code.

Student can use the URL and phone number below to help answer their questions:

http://247pearsoned.custhelp.com/app/home

800-677-6337

0321890132 / 9780321890139 Statistical Reasoning for Everyday Life Plus NEW MyStatLab with Pearson eText -- Access Card Package 4/e

Package consists of:

0321817621 / 9780321817624 Statistical Reasoning for Everyday Life

0321847997 / 9780321847997 My StatLab Glue-in Access Card

032184839X / 9780321848390 MyStatLab Inside Sticker for Glue-In Packages

Winner of the 2015 Sugiyama Meiko Award (Publication Award) of the Behaviormetric Society of Japan

Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner.

Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized structured component analysis and demonstrate how it can be applied to various empirical examples. The book enables quantitative methodologists, applied researchers, and practitioners to grasp the basic concepts behind this new approach and apply it to their own research.

The book emphasizes conceptual discussions throughout while relegating more technical intricacies to the chapter appendices. Most chapters compare generalized structured component analysis to partial least squares path modeling to show how the two component-based approaches differ when addressing an identical issue. The authors also offer a free, online software program (GeSCA) and an Excel-based software program (XLSTAT) for implementing the basic features of generalized structured component analysis.

Professor Puri is one of the most versatile and prolific researchers in the world in mathematical statistics. His research areas include nonparametric statistics, order statistics, limit theory under mixing, time series, splines, tests of normality, generalized inverses of matrices and related topics, stochastic processes, statistics of directional data, random sets, and fuzzy sets and fuzzy measures. His fundamental contributions in developing new rank-based methods and precise evaluation of the standard procedures, asymptotic expansions of distributions of rank statistics, as well as large deviation results concerning them, span such areas as analysis of variance, analysis of covariance, multivariate analysis, and time series, to mention a few. His in-depth analysis has resulted in pioneering research contributions to prominent journals that have substantial impact on current research.
This book together with the other two volumes (Volume 2: Probability Theory and Extreme Value Theory; Volume 3: Time Series, Fuzzy Analysis and Miscellaneous Topics), are a concerted effort to make his research works easily available to the research community. The sheer volume of the research output by him and his collaborators, coupled with the broad spectrum of the subject matters investigated, and the great number of outlets where the papers were published, attach special significance in making these works easily accessible.
The papers selected for inclusion in this work have been classified into three volumes each consisting of several parts. All three volumes carry a final part consisting of the contents of the other two, as well as the complete list of Professor Puri's publications.
Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research.

Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods.

The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters.

Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.

Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R.

A Unified Framework for a Broad Class of Models
The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model estimation, and endogenous variables, along with SabreR commands and examples.

Improve Your Longitudinal Study
In medical and social science research, MGLMMs help disentangle state dependence from incidental parameters. Focusing on these sophisticated data analysis techniques, this book explains the statistical theory and modeling involved in longitudinal studies. Many examples throughout the text illustrate the analysis of real-world data sets. Exercises, solutions, and other material are available on a supporting website.

R is the amazing, free, open-access software package for scientific graphs and calculations used by scientists worldwide. The R Student Companion is a student-oriented manual describing how to use R in high school and college science and mathematics courses. Written for beginners in scientific computation, the book assumes the reader has just some high school algebra and has no computer programming background.

The author presents applications drawn from all sciences and social sciences and includes the most often used features of R in an appendix. In addition, each chapter provides a set of computational challenges: exercises in R calculations that are designed to be performed alone or in groups.

Several of the chapters explore algebra concepts that are highly useful in scientific applications, such as quadratic equations, systems of linear equations, trigonometric functions, and exponential functions. Each chapter provides an instructional review of the algebra concept, followed by a hands-on guide to performing calculations and graphing in R.

R is intuitive, even fun. Fantastic, publication-quality graphs of data, equations, or both can be produced with little effort. By integrating mathematical computation and scientific illustration early in a student’s development, R use can enhance one's understanding of even the most difficult scientific concepts. While R has gained a strong reputation as a package for statistical analysis, The R Student Companion approaches R more completely as a comprehensive tool for scientific computing and graphing.

As a generalization of simple correspondence analysis, multiple correspondence analysis (MCA) is a powerful technique for handling larger, more complex datasets, including the high-dimensional categorical data often encountered in the social sciences, marketing, health economics, and biomedical research. Until now, however, the literature on the subject has been scattered, leaving many in these fields no comprehensive resource from which to learn its theory, applications, and implementation.

Multiple Correspondence Analysis and Related Methods gives a state-of-the-art description of this new field in an accessible, self-contained, textbook format. Explaining the methodology step-by-step, it offers an exhaustive survey of the different approaches taken by researchers from different statistical "schools" and explores a wide variety of application areas. Each chapter includes empirical examples that provide a practical understanding of the method and its interpretation, and most chapters end with a "Software Note" that discusses software and computational aspects. An appendix at the end of the book gives further computing details along with code written in the R language for performing MCA and related techniques. The code and the datasets used in the book are available for download from a supporting Web page.

Providing a unique, multidisciplinary perspective, experts in MCA from both statistics and the social sciences contributed chapters to the book. The editors unified the notation and coordinated and cross-referenced the theory across all of the chapters, making the book read seamlessly. Practical, accessible, and thorough, Multiple Correspondence Analysis and Related Methods brings the theory and applications of MCA under one cover and provides a valuable addition to your statistical toolbox.
Although there has been a surge of interest in density estimation in recent years, much of the published research has been concerned with purely technical matters with insufficient emphasis given to the technique's practical value. Furthermore, the subject has been rather inaccessible to the general statistician.

The account presented in this book places emphasis on topics of methodological importance, in the hope that this will facilitate broader practical application of density estimation and also encourage research into relevant theoretical work. The book also provides an introduction to the subject for those with general interests in statistics. The important role of density estimation as a graphical technique is reflected by the inclusion of more than 50 graphs and figures throughout the text.

Several contexts in which density estimation can be used are discussed, including the exploration and presentation of data, nonparametric discriminant analysis, cluster analysis, simulation and the bootstrap, bump hunting, projection pursuit, and the estimation of hazard rates and other quantities that depend on the density. This book includes general survey of methods available for density estimation. The Kernel method, both for univariate and multivariate data, is discussed in detail, with particular emphasis on ways of deciding how much to smooth and on computation aspects. Attention is also given to adaptive methods, which smooth to a greater degree in the tails of the distribution, and to methods based on the idea of penalized likelihood.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.