More related to number theory

The theory of numbers continues to occupy a central place in modern mathematics because of both its long history over many centuries as well as its many diverse applications to other fields such as discrete mathematics, cryptography, and coding theory. The proof by Andrew Wiles (with Richard Taylor) of Fermat’s last theorem published in 1995 illustrates the high level of difficulty of problems encountered in number-theoretic research as well as the usefulness of the new ideas arising from its proof.

The thirteenth conference of the Canadian Number Theory Association was held at Carleton University, Ottawa, Ontario, Canada from June 16 to 20, 2014. Ninety-nine talks were presented at the conference on the theme of advances in the theory of numbers. Topics of the talks reflected the diversity of current trends and activities in modern number theory. These topics included modular forms, hypergeometric functions, elliptic curves, distribution of prime numbers, diophantine equations, L-functions, Diophantine approximation, and many more. This volume contains some of the papers presented at the conference. All papers were refereed. The high quality of the articles and their contribution to current research directions make this volume a must for any mathematics library and is particularly relevant to researchers and graduate students with an interest in number theory. The editors hope that this volume will serve as both a resource and an inspiration to future generations of researchers in the theory of numbers.

This rather unique book is a guided tour through number theory. While most introductions to number theory provide a systematic and exhaustive treatment of the subject, the authors have chosen instead to illustrate the many varied subjects by associating recent discoveries, interesting method, and unsolved problems. In particular, we read about combinatorial problems in number theory, a branch of mathematics co-founded and popularized by Paul Erdös. Janos Suranyi's vast teaching experience successfully complements Paul Erdös' ability to initiate new directions of research by suggesting new problems and approaches. This book will surely arouse the interest of the student and the teacher alike. Until his death in 1996, Professor Paul Erdös was one of the most prolific mathematicians ever, publishing close to 1,500 papers. While his papers contributed to almost every area of mathematics, his main research interest was in the area of combinatorics, graph theory, and number theory. He is most famous for proposing problems to the mathematical community which were exquisitely simple to understand yet difficult to solve. He was awarded numerous prestigious prizes including the Frank Nelson Cole prize of the AMS. Professor Janos Suranyi is a leading personality in Hungary, not just within the mathematical community, but also in the planning and conducting of different educational projects whiich have led to a new secondary school curriculum. His activity has been recognized by, amongst others, the Middle Cross of the Hungarian Decoration and the Erdös Award of the World Federation of National Mathematical Competitions. rian Decoration and the Erdös Award of the World Federation of National Mathematical Competitions.
Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking.

The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away. It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence. The next chapter begins with the Euclidean algorithm, explores the representations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection. A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day.

Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.
This unique book explores the world of q, known technically as basic hypergeometric series, and represents the author’s personal and life-long study—inspired by Ramanujan—of aspects of this broad topic. While the level of mathematical sophistication is graduated, the book is designed to appeal to advanced undergraduates as well as researchers in the field. The principal aims are to demonstrate the power of the methods and the beauty of the results. The book contains novel proofs of many results in the theory of partitions and the theory of representations, as well as associated identities. Though not specifically designed as a textbook, parts of it may be presented in course work; it has many suitable exercises.

After an introductory chapter, the power of q-series is demonstrated with proofs of Lagrange’s four-squares theorem and Gauss’s two-squares theorem. Attention then turns to partitions and Ramanujan’s partition congruences. Several proofs of these are given throughout the book. Many chapters are devoted to related and other associated topics. One highlight is a simple proof of an identity of Jacobi with application to string theory. On the way, we come across the Rogers–Ramanujan identities and the Rogers–Ramanujan continued fraction, the famous “forty identities” of Ramanujan, and the representation results of Jacobi, Dirichlet and Lorenz, not to mention many other interesting and beautiful results. We also meet a challenge of D.H. Lehmer to give a formula for the number of partitions of a number into four squares, prove a “mysterious” partition theorem of H. Farkas and prove a conjecture of R.Wm. Gosper “which even Erdős couldn’t do.” The book concludes with a look at Ramanujan’s remarkable tau function.

Prime numbers beckon to the beginner, the basic notion of primality being accessible to a child. Yet, some of the simplest questions about primes have stumped humankind for millennia. In this book, the authors concentrate on the computational aspects of prime numbers, such as recognizing primes and discovering the fundamental prime factors of a given number. Over 100 explicit algorithms cast in detailed pseudocode are included in the book. Applications and theoretical digressions serve to illuminate, justify, and underscore the practical power of these algorithms. The 2nd edition adds new material on primality and algorithms and updates all the numerical records, such as the largest prime, etc. It has been revised throughout.

From the reviews of the first edition:

"...The exercises are a gold mine of interesting examples, pointers to the literature and potential research projects. ... Prime Numbers is a welcome addition to the literature of number theory—comprehensive, up-to-date and written with style. It will be useful to anyone interested in algorithms dealing with the arithmetic of the integers and related computational issues." American Scientist

"Destined to become a definitive textbook conveying the most modern computational ideas about prime numbers and factoring, this book will stand as an excellent reference for this kind of computation, and thus be of interest to both educators and researchers. It is also a timely book, since primes and factoring have reached a certain vogue, partly because of cryptography. ..." L’Enseignement Mathématique

"The book is an excellent resource for anyone who wants to understand these algorithms, learn how to implement them, and make them go fast. It's also a lot of fun to read! It's rare to say this of a math book, but open Prime Numbers to a random page and it's hard to put down. Crandall and Pomerance have written a terrific book." Bulletin of the AMS

This book started with Lattice Theory, First Concepts, in 1971. Then came General Lattice Theory, First Edition, in 1978, and the Second Edition twenty years later. Since the publication of the first edition in 1978, General Lattice Theory has become the authoritative introduction to lattice theory for graduate students and the standard reference for researchers. The First Edition set out to introduce and survey lattice theory. Some 12,000 papers have been published in the field since then; so Lattice Theory: Foundation focuses on introducing the field, laying the foundation for special topics and applications. Lattice Theory: Foundation, based on the previous three books, covers the fundamental concepts and results. The main topics are distributivity, congruences, constructions, modularity and semimodularity, varieties, and free products. The chapter on constructions is new, all the other chapters are revised and expanded versions from the earlier volumes. Almost 40 “diamond sections’’, many written by leading specialists in these fields, provide a brief glimpse into special topics beyond the basics. “Lattice theory has come a long way... For those who appreciate lattice theory, or who are curious about its techniques and intriguing internal problems, Professor Grätzer's lucid new book provides a most valuable guide to many recent developments. Even a cursory reading should provide those few who may still believe that lattice theory is superficial or naive, with convincing evidence of its technical depth and sophistication.” Bulletin of the American Mathematical Society “Grätzer’s book General Lattice Theory has become the lattice theorist’s bible.” Mathematical Reviews
This book of tables includes a reduced representative of each class of. integral positive definite primitive quaternary quadratic forms through discriminant 1732. The classes are grouped into genera; also included are Hasse symbols, the number of automorphs and the level of each such form, and the mass of each genus. An appendix lists p-adic densities and p-adic Jordan splittings for each genus in the tables for p = 2 and for each odd prime p dividing the discriminant. The book is divided into several sections. The first, an introductory section, contains background material, an explanation of the techniques used to generate the information contained in the tables, a description of the format of the tables, some instructions for computer use, examples, and references. The next section contains a printed version of the tables through discriminant 500, included to allow the reader to peruse at least this much without the inconvenience of making his/her own hard copy via the computer. Because of their special interest, we include tables of discriminants 729 and 1729 at the end of this section. Limitations of space preclude publication of more than this in printed form. A printed appendix through discriminant 500 and for discriminants 729 and 1729 follows. The complete tables and appendix through discriminant 1732 are compressed onto the accompanying 3.5 inch disk, formatted for use in a PC-compatible computer and ready for research use particularly when uploaded to a mainframe. Documentation is included in the Introduction.
ItisnowwellknownthatFermat’slasttheoremhasbeenproved. For more than three and a half centuries, mathematicians — from the greatnamestothecleveramateurs—triedtoproveFermat’sfamous statement. The approach was new and involved very sophisticated theories. Finallythelong-soughtproofwasachieved. Thearithmetic theory of elliptic curves, modular forms, Galois representations, and their deformations, developed by many mathematicians, were the tools required to complete the di?cult proof. Linked with this great mathematical feat are the names of TANI- YAMA, SHIMURA, FREY, SERRE, RIBET, WILES, TAYLOR. Their contributions, as well as hints of the proof, are discussed in the Epilogue. This book has not been written with the purpose of presentingtheproofofFermat’stheorem. Onthecontrary, itiswr- ten for amateurs, teachers, and mathematicians curious about the unfolding of the subject. I employ exclusively elementary methods (except in the Epilogue). They have only led to partial solutions but their interest goes beyond Fermat’s problem. One cannot stop admiring the results obtained with these limited techniques. Nevertheless, I warn that as far as I can see — which in fact is not much — the methods presented here will not lead to a proof of Fermat’s last theorem for all exponents. vi Preface The presentation is self-contained and details are not spared, so the reading should be smooth. Most of the considerations involve ordinary rational numbers and only occasionally some algebraic (non-rational) numbers. For this reason I excluded Kummer’s important contributions, which are treated in detail in my book, Classical Theory of Algebraic N- bers and described in my 13 Lectures on Fermat’s Last Theorem (new printing, containing an Epilogue about recent results).
This book was written over a period of more than six years. Several months after we finished our work, N.1. Fel'dman (the senior author of the book) died. All additions and corrections entered after his death were made by his coauthor. The assistance of many of our colleagues was invaluable during the writing of the book. They examined parts of the manuscript and suggested many improvements, made useful comments and corrected many errors. I much have pleasure in acknowledging our great indebtedness to them. Special thanks are due to A. B. Shidlovskii, V. G. Chirskii, A.1. Galochkin and O. N. Vasilenko. I would like to express my gratitude to D. Bertrand and J. Wolfart for their help in the final stages of this book. Finally, I wish to thank Neal Koblitz for having translated this text into English. August 1997 Yu. V.Nesterenko Transcendental Numbers N.1. Fel'dman and Yu. V. Nesterenko Translated from the Russian by Neal Koblitz Contents Notation ...................................................... 9 Introduction ................................................... 11 0.1 Preliminary Remarks .................................. 11 0.2 Irrationality of J2 ..................................... 11 0.3 The Number 1C' •••••••••••••••••••••••••••••••••••••••• 13 0.4 Transcendental Numbers ............................... 14 0.5 Approximation of Algebraic Numbers .................... 15 0.6 Transcendence Questions and Other Branches of Number Theory ..................................... 16 0.7 The Basic Problems Studied in Transcendental Number Theory ....................................... 17 0.8 Different Ways of Giving the Numbers ................... 19 0.9 Methods .......................... . . . . . . . . . . . . . . 20 . . . . .
The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, now that the book appears in English, close studyand emulation. In particular those emphases allow him to devote the eighth chapter to an analysis of the interrelationship of the class number of algebraic number fields involved and the bounds on the heights of thesolutions of the diophantine equations. Those ideas warrant further development. The final chapter deals with effective aspects of the Hilbert Irreducibility Theorem, harkening back to earlier work of the author. There is no other congenial entry point to the ideas of the last two chapters in the literature.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.