More related to functional analysis

The aim of this monograph is to describe the main concepts and recent - vances in multiscale ?nite element methods. This monograph is intended for thebroaderaudienceincludingengineers,appliedscientists,andforthosewho are interested in multiscale simulations. The book is intended for graduate students in applied mathematics and those interested in multiscale compu- tions. It combines a practical introduction, numerical results, and analysis of multiscale ?nite element methods. Due to the page limitation, the material has been condensed. Each chapter of the book starts with an introduction and description of the proposed methods and motivating examples. Some new techniques are introduced using formal arguments that are justi?ed later in the last chapter. Numerical examples demonstrating the signi?cance of the proposed methods are presented in each chapter following the description of the methods. In the last chapter, we analyze a few representative cases with the objective of demonstrating the main error sources and the convergence of the proposed methods. A brief outline of the book is as follows. The ?rst chapter gives a general introductiontomultiscalemethodsandanoutlineofeachchapter.Thesecond chapter discusses the main idea of the multiscale ?nite element method and its extensions. This chapter also gives an overview of multiscale ?nite element methods and other related methods. The third chapter discusses the ext- sion of multiscale ?nite element methods to nonlinear problems. The fourth chapter focuses on multiscale methods that use limited global information.
The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. After initial successes by Poincare and others in the late 19th and early 20th centuries, the theory encountered obstacles that prevented it from growing quickly into an analogue of the theory for functions of one complex variable. Beginning in the 1930s, initially through the work of Oka, then H. Cartan, and continuing with the work of Grauert, Remmert, and others, new tools were introduced into the theory of several complex variables that resolved many of the open problems and fundamentally changed the landscape of the subject. These tools included a central role for sheaf theory and increased uses of topology and algebra. The book by Gunning and Rossi was the first of the modern era of the theory of several complex variables, which is distinguished by the use of these methods. The intention of Gunning and Rossi's book is to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces. Fundamental concepts and techniques are discussed as early as possible. The first chapter covers material suitable for a one-semester graduate course, presenting many of the central problems and techniques, often in special cases. The later chapters give more detailed expositions of sheaf theory for analytic functions and the theory of complex analytic spaces. Since its original publication, this book has become a classic resource for the modern approach to functions of several complex variables and the theory of analytic spaces. Further information about this book, including updates, can be found at the following URL:
The author's approach is one of continuum models of the aerodynamic flow interacting with a flexible structure whose behavior is governed by partial differential equations. Both linear and nonlinear models are considered although much of the book is concerned with the former while keeping the latter clearly in view. A complete chapter is also devoted to nonlinear theory. The author has provided new insights into the classical inviscid aerodynamics and raises novel and interesting questions on fundamental issues that have too often been neglected or forgotten in the development of the early history of the subject. The author contrasts his approach with discrete models for

the unsteady aerodynamic flow and the finite element model for the structure. Much of the aeroelasticity has been developed with applications formerly in mind because of its enormous consequences for the safety of aircraft.

Aeroelastic instabilities such as divergence and flutter and aeroelastic responses to gusts can pose a significant hazard to the aircraft and impact its performance. Yet, it is now recognized that

there are many other physical phenomena that have similar characteristics ranging from flows around flexible tall buildings and long span bridges, alternate energy sources such as electric power generation by smart structures to flows internal to the human body.

From the foreword:

"For the theorist and applied mathematician who wishes an introduction to this fascinating subject as well as for the experienced aeroelastician who is open to new challenges and a fresh viewpoint,

this book and its author have much to offer the reader."

Earl Dowell, Duke University, USA

As mentioned in the Introduction to Volume I, the present monograph is intended both for mathematicians interested in applications of the theory of linear operators and operator-functions to problems of hydrodynamics, and for researchers of applied hydrodynamic problems, who want to study these problems by means of the most recent achievements in operator theory. The second volume considers nonself-adjoint problems describing motions and normal oscillations of a homogeneous viscous incompressible fluid. These ini tial boundary value problems of mathematical physics include, as a rule, derivatives in time of the unknown functions not only in the equation, but in the boundary conditions, too. Therefore, the spectral problems corresponding to such boundary value problems include the spectral parameter in the equation and in the bound ary conditions, and are nonself-adjoint. In their study, we widely used the theory of nonself-adjoint operators acting in a Hilbert space and also the theory of operator pencils. In particular, the methods of operator pencil factorization and methods of operator theory in a space with indefinite metric find here a wide application. We note also that this volume presents both the now classical problems on oscillations of a homogeneous viscous fluid in an open container (in an ordinary state and in weightlessness) and a new set of problems on oscillations of partially dissipative hydrodynamic systems, and problems on oscillations of a visco-elastic or relaxing fluid. Some of these problems need a more careful additional investigation and are rather complicated.
This text is a self-contained introduction to the three main families that we encounter in analysis – metric spaces, normed spaces, and inner product spaces – and to the operators that transform objects in one into objects in another. With an emphasis on the fundamental properties defining the spaces, this book guides readers to a deeper understanding of analysis and an appreciation of the field as the “science of functions.”

Many important topics that are rarely presented in an accessible way to undergraduate students are included, such as unconditional convergence of series, Schauder bases for Banach spaces, the dual of lp topological isomorphisms, the Spectral Theorem, the Baire Category Theorem, and the Uniform Boundedness Principle. The text is constructed in such a way that instructors have the option whether to include more advanced topics.

Written in an appealing and accessible style, Metrics, Norms, Inner Products, and Operator Theory is suitable for independent study or as the basis for an undergraduate-level course. Instructors have several options for building a course around the text depending on the level and interests of their students.

Key features:Aimed at students who have a basic knowledge of undergraduate real analysis. All of the required background material is reviewed in the first chapter.Suitable for undergraduate-level courses; no familiarity with measure theory is required.Extensive exercises complement the text and provide opportunities for learning by doing.A separate solutions manual is available for instructors via the Birkhäuser website ( Unique text providing an undergraduate-level introduction to metrics, norms, inner products, and their associated operator theory.

A rigorous introduction to calculus in vector spaces

The concepts and theorems of advanced calculus combined with related computational methods are essential to understanding nearly all areas of quantitative science. Analysis in Vector Spaces presents the central results of this classic subject through rigorous arguments, discussions, and examples. The book aims to cultivate not only knowledge of the major theoretical results, but also the geometric intuition needed for both mathematical problem-solving and modeling in the formal sciences.

The authors begin with an outline of key concepts, terminology, and notation and also provide a basic introduction to set theory, the properties of real numbers, and a review of linear algebra. An elegant approach to eigenvector problems and the spectral theorem sets the stage for later results on volume and integration. Subsequent chapters present the major results of differential and integral calculus of several variables as well as the theory of manifolds. Additional topical coverage includes:

Sets and functions

Real numbers

Vector functions

Normed vector spaces

First- and higher-order derivatives

Diffeomorphisms and manifolds

Multiple integrals

Integration on manifolds

Stokes' theorem

Basic point set topology

Numerous examples and exercises are provided in each chapter to reinforce new concepts and to illustrate how results can be applied to additional problems. Furthermore, proofs and examples are presented in a clear style that emphasizes the underlying intuitive ideas. Counterexamples are provided throughout the book to warn against possible mistakes, and extensive appendices outline the construction of real numbers, include a fundamental result about dimension, and present general results about determinants.

Assuming only a fundamental understanding of linear algebra and single variable calculus, Analysis in Vector Spaces is an excellent book for a second course in analysis for mathematics, physics, computer science, and engineering majors at the undergraduate and graduate levels. It also serves as a valuable reference for further study in any discipline that requires a firm understanding of mathematical techniques and concepts.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.