## Similar

Thinking in Systems, is a concise and crucial book offering insight for problem solving on scales ranging from the personal to the global. Edited by the Sustainability Institute’s Diana Wright, this essential primer brings systems thinking out of the realm of computers and equations and into the tangible world, showing readers how to develop the systems-thinking skills that thought leaders across the globe consider critical for 21st-century life.

Some of the biggest problems facing the world—war, hunger, poverty, and environmental degradation—are essentially system failures. They cannot be solved by fixing one piece in isolation from the others, because even seemingly minor details have enormous power to undermine the best efforts of too-narrow thinking.

While readers will learn the conceptual tools and methods of systems thinking, the heart of the book is grander than methodology. Donella Meadows was known as much for nurturing positive outcomes as she was for delving into the science behind global dilemmas. She reminds readers to pay attention to what is important, not just what is quantifiable, to stay humble, and to stay a learner.

In a world growing ever more complicated, crowded, and interdependent, Thinking in Systems helps readers avoid confusion and helplessness, the first step toward finding proactive and effective solutions.

For centuries, scientific thought was focused on bringing order to the natural world. But even as relativity and quantum mechanics undermined that rigid certainty in the first half of the twentieth century, the scientific community clung to the idea that any system, no matter how complex, could be reduced to a simple pattern. In the 1960s, a small group of radical thinkers began to take that notion apart, placing new importance on the tiny experimental irregularities that scientists had long learned to ignore. Miniscule differences in data, they said, would eventually produce massive ones—and complex systems like the weather, economics, and human behavior suddenly became clearer and more beautiful than they had ever been before.In this seminal work of scientific writing, James Gleick lays out a cutting edge field of science with enough grace and precision that any reader will be able to grasp the science behind the beautiful complexity of the world around us. With more than a million copies sold, Chaos is “a groundbreaking book about what seems to be the future of physics” by a writer who has been a finalist for both the Pulitzer Prize and the National Book Award, the author of Time Travel: A History and Genius: The Life and Science of Richard Feynman (Publishers Weekly).

Uncertainty and Information: Foundations of Generalized Information Theory contains comprehensive and up-to-date coverage of results that have emerged from a research program begun by the author in the early 1990s under the name "generalized information theory" (GIT). This ongoing research program aims to develop a formal mathematical treatment of the interrelated concepts of uncertainty and information in all their varieties. In GIT, as in classical information theory, uncertainty (predictive, retrodictive, diagnostic, prescriptive, and the like) is viewed as a manifestation of information deficiency, while information is viewed as anything capable of reducing the uncertainty. A broad conceptual framework for GIT is obtained by expanding the formalized language of classical set theory to include more expressive formalized languages based on fuzzy sets of various types, and by expanding classical theory of additive measures to include more expressive non-additive measures of various types.

This landmark book examines each of several theories for dealing with particular types of uncertainty at the following four levels:

* Mathematical formalization of the conceived type of uncertainty

* Calculus for manipulating this particular type of uncertainty

* Justifiable ways of measuring the amount of uncertainty in any situation formalizable in the theory

* Methodological aspects of the theory

With extensive use of examples and illustrations to clarify complex material and demonstrate practical applications, generous historical and bibliographical notes, end-of-chapter exercises to test readers' newfound knowledge, glossaries, and an Instructor's Manual, this is an excellent graduate-level textbook, as well as an outstanding reference for researchers and practitioners who deal with the various problems involving uncertainty and information. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

The antidote to fuzzy thinking, with furry animals!

Have you read (or stumbled into) one too many irrational online debates? Ali Almossawi certainly had, so he wrote An Illustrated Book of Bad Arguments! This handy guide is here to bring the internet age a much-needed dose of old-school logic (really old-school, a la Aristotle).

Here are cogent explanations of the straw man fallacy, the slippery slope argument, the ad hominem attack, and other common attempts at reasoning that actually fall short—plus a beautifully drawn menagerie of animals who (adorably) commit every logical faux pas. Rabbit thinks a strange light in the sky must be a UFO because no one can prove otherwise (the appeal to ignorance). And Lion doesn’t believe that gas emissions harm the planet because, if that were true, he wouldn’t like the result (the argument from consequences).

Once you learn to recognize these abuses of reason, they start to crop up everywhere from congressional debate to YouTube comments—which makes this geek-chic book a must for anyone in the habit of holding opinions.

Logically Fallacious is one of the most comprehensive collections of logical fallacies with all original examples and easy to understand descriptions, perfect for educators, debaters, or anyone who wants to improve his or her reasoning skills.

"Expose an irrational belief, keep a person rational for a day. Expose irrational thinking, keep a person rational for a lifetime." - Bo Bennett

Logic For Dummies tracks an introductory logic course at the college level. Concrete, real-world examples help you understand each concept you encounter, while fully worked out proofs and fun logic problems encourage you students to apply what you’ve learned.

For centuries, scientific thought was focused on bringing order to the natural world. But even as relativity and quantum mechanics undermined that rigid certainty in the first half of the twentieth century, the scientific community clung to the idea that any system, no matter how complex, could be reduced to a simple pattern. In the 1960s, a small group of radical thinkers began to take that notion apart, placing new importance on the tiny experimental irregularities that scientists had long learned to ignore. Miniscule differences in data, they said, would eventually produce massive ones—and complex systems like the weather, economics, and human behavior suddenly became clearer and more beautiful than they had ever been before.In this seminal work of scientific writing, James Gleick lays out a cutting edge field of science with enough grace and precision that any reader will be able to grasp the science behind the beautiful complexity of the world around us. With more than a million copies sold, Chaos is “a groundbreaking book about what seems to be the future of physics” by a writer who has been a finalist for both the Pulitzer Prize and the National Book Award, the author of Time Travel: A History and Genius: The Life and Science of Richard Feynman (Publishers Weekly).

The book begins with two tutorials -- one on concepts and the other on fuzzy logic -- aimed at making relevant experimental and theoretical issues accessible to researchers in both fields. The contributors then discuss the experiments that led to the rejection of the classical view of concepts; analyze the various arguments against the use of fuzzy logic in the psychology of concepts and show that they are fallacious; review methods based on sound measurement principles for constructing fuzzy sets; introduce formal concept analysis and its capabilities when generalized by using fuzzy logic; consider conceptual combinations; examine lexical concepts; and propose a research program based on cooperation between researchers in the psychology of concepts and fuzzy logic.

George Klir is the Distinguished Professor of Systems Science and Director of the Center for Intelligent Systems, Fellow of the IEEE and IFSA, editor of nine volumes, editorial board member of 18 journals, and author or co-author of 16 books

Foreword by the inventor of fuzzy logic-- Professor Lotfi Zadeh

From epidemics of disease to outbreaks of market madness, from people searching for information to firms surviving crisis and change, from the structure of personal relationships to the technological and social choices of entire societies, Watts weaves together a network of discoveries across an array of disciplines to tell the story of an explosive new field of knowledge, the people who are building it, and his own peculiar path in forging this new science.

A NEW YORK TIMES NOTABLE BOOK

A VOICE LITERARY SUPPLEMENT TOP 25 FAVORITE BOOKS OF THE YEAR

AN ESQUIRE MAGAZINE BEST BOOK OF THE YEAR

Explaining why the whole is sometimes smarter than the sum of its parts, Johnson presents surprising examples of feedback, self-organization, and adaptive learning. How does a lively neighborhood evolve out of a disconnected group of shopkeepers, bartenders, and real estate developers? How does a media event take on a life of its own? How will new software programs create an intelligent World Wide Web?

In the coming years, the power of self-organization -- coupled with the connective technology of the Internet -- will usher in a revolution every bit as significant as the introduction of electricity. Provocative and engaging, Emergence puts you on the front lines of this exciting upheaval in science and thought.

This volume covers primary components of ignorance and their impact on practice and decision making. It provides an overview of the current state of uncertainty modeling and analysis, and reviews emerging theories while emphasizing practical applications in science and engineering.

The book introduces fundamental concepts of classical, fuzzy, and rough sets, probability, Bayesian methods, interval analysis, fuzzy arithmetic, interval probabilities, evidence theory, open-world models, sequences, and possibility theory. The authors present these methods to meet the needs of practitioners in many fields, emphasizing the practical use, limitations, advantages, and disadvantages of the methods.

Combining stories of great writers and philosophers with quotations and riddles, this completely original text for first courses in mathematical logic examines problems related to proofs, propositional logic and first-order logic, undecidability, and other topics. 2013 edition.

The world, as Nick Bilton—with tongue-in-cheek—shows, has been going to hell for a long, long time, and what we are experiencing is the twenty-first-century version of the fear that always takes hold as new technology replaces the old. In fact, as Bilton shows, the digital era we are part of is, in all its creative and disruptive forms, the foundation for exciting and engaging experiences not only for business but society as well.

Both visionary and practical, I Live in the Future & Here’s How It Works captures the zeitgeist of an emerging age, providing the understanding of how a radically changed media world is influencing human behavior:

• With a walk on the wild side—through the porn industry—we see how this business model is leading the way, adapting product to consumer needs and preferences and beating piracy.

• By understanding how the Internet is creating a new type of consumer, the “consumnivore,” living in a world where immediacy trumps quality and quantity, we see who is dictating the type of content being created.

• Through exploring the way our brains are adapting, we gain a new understanding of the positive effect of new media narratives on thinking and action. One fascinating study, for example, shows that surgeons who play video games are more skillful than their nonplaying counterparts.

• Why social networks, the openness of the Internet, and handy new gadgets are not just vehicles for telling the world what you had for breakfast but are becoming the foundation for “anchoring communities” that tame information overload and help determine what news and information to trust and consume and what to ignore.

• Why the map of tomorrow is centered on “Me,” and why that simple fact means a totally new approach to the way media companies shape content.

• Why people pay for experiences, not content; and why great storytelling and extended relationships will prevail and enable businesses to engage with customers in new ways that go beyond merely selling information, instead creating unique and meaningful experiences.

I Live in the Future & Here’s How It Works walks its own talk by creating a unique reader experience: Semacodes embedded in both print and eBook versions will take readers directly to Bilton’s website (www.NickBilton.com), where they can access videos of the author further developing his point of view and also delve into the research that was key to shaping the central ideas of the book. The website will also offer links to related content and the ability to comment on a chapter, allowing the reader to join the conversation.

From the Hardcover edition.

Because these new developments in logical thought tended to perfect and sharpen the deductive method, an indispensable tool in many fields for deriving conclusions from accepted assumptions, the author decided to widen the scope of the work. In subsequent editions he revised the book to make it also a text on which to base an elementary college course in logic and the methodology of deductive sciences. It is this revised edition that is reprinted here.

Part One deals with elements of logic and the deductive method, including the use of variables, sentential calculus, theory of identity, theory of classes, theory of relations and the deductive method. The Second Part covers applications of logic and methodology in constructing mathematical theories, including laws of order for numbers, laws of addition and subtraction, methodological considerations on the constructed theory, foundations of arithmetic of real numbers, and more. The author has provided numerous exercises to help students assimilate the material, which not only provides a stimulating and thought-provoking introduction to the fundamentals of logical thought, but is the perfect adjunct to courses in logic and the foundation of mathematics.

The selection of topics conveys not only their role in this historical development of mathematics but also their value as bases for understanding the changing nature of mathematics. Among the topics covered in this wide-ranging text are: mathematics before Euclid, Euclid's Elements, non-Euclidean geometry, algebraic structure, formal axiomatics, the real numbers system, sets, logic and philosophy and more. The emphasis on axiomatic procedures provides important background for studying and applying more advanced topics, while the inclusion of the historical roots of both algebra and geometry provides essential information for prospective teachers of school mathematics.

The readable style and sets of challenging exercises from the popular earlier editions have been continued and extended in the present edition, making this a very welcome and useful version of a classic treatment of the foundations of mathematics. "A truly satisfying book." — Dr. Bruce E. Meserve, Professor Emeritus, University of Vermont.

Beginning with a survey of set theory and its role in mathematics, the text proceeds to definitions and examples of categories and explains the use of arrows in place of set-membership. The introduction to topos structure covers topos logic, algebra of subobjects, and intuitionism and its logic, advancing to the concept of functors, set concepts and validity, and elementary truth. Explorations of categorial set theory, local truth, and adjointness and quantifiers conclude with a study of logical geometry.

The National Security Agency was born out of the legendary codebreaking programs of World War II that cracked the famed Enigma machine and other German and Japanese codes, thereby turning the tide of Allied victory. In the postwar years, as the United States developed a new enemy in the Soviet Union, our intelligence community found itself targeting not soldiers on the battlefield, but suspected spies, foreign leaders, and even American citizens. Throughout the second half of the twentieth century, NSA played a vital, often fraught and controversial role in the major events of the Cold War, from the Korean War to the Cuban Missile Crisis to Vietnam and beyond.

In Code Warriors, Stephen Budiansky—a longtime expert in cryptology—tells the fascinating story of how NSA came to be, from its roots in World War II through the fall of the Berlin Wall. Along the way, he guides us through the fascinating challenges faced by cryptanalysts, and how they broke some of the most complicated codes of the twentieth century. With access to new documents, Budiansky shows where the agency succeeded and failed during the Cold War, but his account also offers crucial perspective for assessing NSA today in the wake of the Edward Snowden revelations. Budiansky shows how NSA’s obsession with recording every bit of data and decoding every signal is far from a new development; throughout its history the depth and breadth of the agency’s reach has resulted in both remarkable successes and destructive failures.

Featuring a series of appendixes that explain the technical details of Soviet codes and how they were broken, this is a rich and riveting history of the underbelly of the Cold War, and an essential and timely read for all who seek to understand the origins of the modern NSA.

From the Hardcover edition.

The math we learn in school can seem like a dull set of rules, laid down by the ancients and not to be questioned. In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it.

Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer?

How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God.

Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.

The two-part selection of puzzles and paradoxes begins with examinations of the nature of infinity and some curious systems related to Gödel's theorem. The first three chapters of Part II contain generalized Gödel theorems. Symbolic logic is deferred until the last three chapters, which give explanations and examples of first-order arithmetic, Peano arithmetic, and a complete proof of Gödel's celebrated result involving statements that cannot be proved or disproved. The book also includes a lively look at decision theory, better known as recursion theory, which plays a vital role in computer science.

Contents include: Sets and Relations — Cantor's concept of a set, etc.

Natural Number Sequence — Zorn's Lemma, etc.

Extension of Natural Numbers to Real Numbers

Logic — the Statement and Predicate Calculus, etc.

Informal Axiomatic Mathematics

Boolean AlgebraInformal Axiomatic Set TheorySeveral Algebraic Theories — Rings, Integral Domains, Fields, etc.

First-Order Theories — Metamathematics, etc.

Symbolic logic does not figure significantly until the final chapter. The main theme of the book is mathematics as a system seen through the elaboration of real numbers; set theory and logic are seen s efficient tools in constructing axioms necessary to the system.

Mathematics students at the undergraduate level, and those who seek a rigorous but not unnecessarily technical introduction to mathematical concepts, will welcome the return to print of this most lucid work.

"Professor Stoll . . . has given us one of the best introductory texts we have seen." — Cosmos.

"In the reviewer's opinion, this is an excellent book, and in addition to its use as a textbook (it contains a wealth of exercises and examples) can be recommended to all who wish an introduction to mathematical logic less technical than standard treatises (to which it can also serve as preliminary reading)." — Mathematical Reviews.

Scientists have recently discovered a new law of nature and its footprints are virtually everywhere-- in the spread of forest fires, mass extinctions, traffic jams, earthquakes, stock-market fluctuations, the rise and fall of nations, and even trends in fashion, music and art. Wherever we look, the world is modelled on a simple template: like a steep pile of sand, it is poised on the brink of instability, with avalanches-- in events, ideas or whatever-- following a universal pattern of change. This remarkable discovery heralds what Mark Buchanan calls the new science of 'ubiquity', a science whose secret lies in the stuff of the everyday world. Combining literary flair with scientific rigour, this enthralling book documents the coming revolution by telling the story of the researchers' exploration of the law, their ingenious work and unexpected insights.

Buchanan reveals that we are witnessing the emergence of an extraordinarily powerful new field of science that will help us comprehend the bewildering and unruly rhythms that dominate our lives and may even lead to a true science of the dynamics of human culture and history.

After a brief overview, the approach begins with elementary toposes and advances to internal category theory, topologies and sheaves, geometric morphisms, and logical aspects of topos theory. Additional topics include natural number objects, theorems of Deligne and Barr, cohomology, and set theory. Each chapter concludes with a series of exercises, and an appendix and indexes supplement the text.

The authors introduce the core principles of modern cryptography, with an emphasis on formal definitions, clear assumptions, and rigorous proofs of security. The book begins by focusing on private-key cryptography, including an extensive treatment of private-key encryption, message authentication codes, and hash functions. The authors also present design principles for widely used stream ciphers and block ciphers including RC4, DES, and AES, plus provide provable constructions of stream ciphers and block ciphers from lower-level primitives. The second half of the book covers public-key cryptography, beginning with a self-contained introduction to the number theory needed to understand the RSA, Diffie-Hellman, and El Gamal cryptosystems (and others), followed by a thorough treatment of several standardized public-key encryption and digital signature schemes.

Integrating a more practical perspective without sacrificing rigor, this widely anticipated Second Edition offers improved treatment of:

Stream ciphers and block ciphers, including modes of operation and design principles Authenticated encryption and secure communication sessions Hash functions, including hash-function applications and design principles Attacks on poorly implemented cryptography, including attacks on chained-CBC encryption, padding-oracle attacks, and timing attacks The random-oracle model and its application to several standardized, widely used public-key encryption and signature schemes Elliptic-curve cryptography and associated standards such as DSA/ECDSA and DHIES/ECIESContaining updated exercises and worked examples, Introduction to Modern Cryptography, Second Edition can serve as a textbook for undergraduate- or graduate-level courses in cryptography, a valuable reference for researchers and practitioners, or a general introduction suitable for self-study.

"This book is a very specialized but broadly useful introduction to set theory. It is aimed at 'the beginning student of advanced mathematics' … who wants to understand the set-theoretic underpinnings of the mathematics he already knows or will learn soon. It is also useful to the professional mathematician who knew these underpinnings at one time but has now forgotten exactly how they go. … A good reference for how set theory is used in other parts of mathematics." — Allen Stenger, The Mathematical Association of America, September 2011.

Both metaphor and framework, the systems concept as articulated by its earliest proponents highlights relationship and interconnectedness among the biological, ecological, social, psychological, and technological dimensions of our increasingly complex lives. Seeking to transcend the reductionism and mechanism of classical science-which they saw as limited by its focus on the discrete, component parts of reality-the general systems community hoped to complement this analytic approach with a more holistic orientation. As one of many systems traditions, the general systems group was specifically interested in fostering collaboration and integration among different disciplinary perspectives, with an emphasis on nurturing more participatory and truly democratic forms of social organization.

The Science of Synthesis documents a unique episode in the history of modern thought, one that remains relevant today. This book will be of interest to historians of science, system thinkers, scholars and practicioners in the social sciences, management, organization development and related fields, as well as the general reader interested in the history of ideas that have shaped critical developments in the second half of the twentieth century.

A brief and breezy explanation of the new language of mathematics precedes a smorgasbord of such thought-provoking subjects as the googolplex (the largest definite number anyone has yet bothered to conceive of); assorted geometries — plane and fancy; famous puzzles that made mathematical history; and tantalizing paradoxes. Gamblers receive fair warning on the laws of chance; a look at rubber-sheet geometry twists circles into loops without sacrificing certain important properties; and an exploration of the mathematics of change and growth shows how calculus, among its other uses, helps trace the path of falling bombs.

Written with wit and clarity for the intelligent reader who has taken high school and perhaps college math, this volume deftly progresses from simple arithmetic to calculus and non-Euclidean geometry. It “lives up to its title in every way [and] might well have been merely terrifying, whereas it proves to be both charming and exciting." — Saturday Review of Literature.

However, few mathematicians of the time were equipped to understand the young scholar's complex proof. Ernest Nagel and James Newman provide a readable and accessible explanation to both scholars and non-specialists of the main ideas and broad implications of Gödel's discovery. It offers every educated person with a taste for logic and philosophy the chance to understand a previously difficult and inaccessible subject.

Marking the 50th anniversary of the original publication of Gödel's Proof, New York University Press is proud to publish this special anniversary edition of one of its bestselling and most frequently translated books. With a new introduction by Douglas R. Hofstadter, this book will appeal students, scholars, and professionals in the fields of mathematics, computer science, logic and philosophy, and science.

Can we scientifically predict our future? Scientists and pseudo scientists have been pursuing this mystery for hundreds and perhaps thousands of years. But now, astonishing new research is revealing patterns in human behavior previously thought to be purely random. Precise, orderly, predictable patterns...

Albert Laszlo Barabasi, already the world's preeminent researcher on the science of networks, describes his work on this profound mystery in Bursts, a stunningly original investigation into human nature. His approach relies on the digital reality of our world, from mobile phones to the Internet and email, because it has turned society into a huge research laboratory. All those electronic trails of time stamped texts, voicemails, and internet searches add up to a previously unavailable massive data set of statistics that track our movements, our decisions, our lives. Analysis of these trails is offering deep insights into the rhythm of how we do everything. His finding? We work and fight and play in short flourishes of activity followed by next to nothing. The pattern isn't random, it's "bursty." Randomness does not rule our lives in the way scientists have assumed up until now.

Illustrating this revolutionary science, Barabasi artfully weaves together the story of a 16th century burst of human activity-a bloody medieval crusade launched in his homeland, Transylvania-with the modern tale of a contemporary artist hunted by the FBI through our post 9/11 surveillance society. These narratives illustrate how predicting human behavior has long been the obsession, sometimes the duty, of those in power. Barabási's astonishingly wide range of examples from seemingly unrelated areas include how dollar bills move around the U.S., the pattern everyone follows in writing email, the spread of epidemics, and even the flight patterns of albatross. In all these phenomena a virtually identical, mathematically described bursty pattern emerges.

Bursts reveals what this amazing new research is showing us about where individual spontaneity ends and predictability in human behavior begins. The way you think about your own potential to do something truly extraordinary will never be the same.

PROFINET CBA divides distributed, complex applications into autonomous units of manageable size. Existing fieldbuses such as PROFIBUS and AS-Interface can be integrated using so-called proxies. This permits separate and cross-vendor development, testing and commissioning of individual plant sections prior to the integration of the solution as a whole.

PROFINET IO, with its particularly fast real-time communication, fulfills all demands currently placed on the transmission of process data and enables easy integration of existing fieldbus systems. Isochronous real-time (IRT) is used for isochronous communication in motion control applications.

PROFINET depends on established IT standards for network management and teleservice. Particulary to automation control engineering it offers a special security concept. Special industrial network technology consisting of active network components, cables and connection systems, together with recommendations for installation, complete the concept.

This book serves as an introduction to PROFINET technology. Configuring engineers, commissioning engineers and technicians are given an overview of the concept and the fundamentals they need to solve PROFINET-based automation tasks. Technical relationships and practical applications are described using SIMATIC products as example.

What can we learn from the collective intelligence and adaptability

of an ant colony?

This book answers such questions by highlighting common themes in

the study of complex systems.

Topics covered include self-organisation, emergence, agent-based

simulations, complex networks, phase plane plots, fractals, chaos,

measures of complexity, model building, and the scientific method.

Explanations are simple and concise, with common misconceptions

clarified. Numerous exercises help enthusiasts consolidate their

understanding through peer learning.

Supplementary resources are at the companion websites

www.simplicitysg.net/books and www.facebook.com/simcomty.

Forget everything you've been taught about math. In Burn Math Class, Jason Wilkes takes the traditional approach to how we learn math--with its unwelcoming textbooks, unexplained rules, and authoritarian assertions-and sets it on fire.

Focusing on how mathematics is created rather than on mathematical facts, Wilkes teaches the subject in a way that requires no memorization and no prior knowledge beyond addition and multiplication. From these simple foundations, Burn Math Class shows how mathematics can be (re)invented from scratch without preexisting textbooks and courses. We can discover math on our own through experimentation and failure, without appealing to any outside authority. When math is created free from arcane notations and pretentious jargon that hide the simplicity of mathematical concepts, it can be understood organically--and it becomes fun!

Following this unconventional approach, Burn Math Class leads the reader from the basics of elementary arithmetic to various "advanced" topics, such as time-dilation in special relativity, Taylor series, and calculus in infinite-dimensional spaces. Along the way, Wilkes argues that orthodox mathematics education has been teaching the subject backward: calculus belongs before many of its so-called prerequisites, and those prerequisites cannot be fully understood without calculus.

Like the smartest, craziest teacher you've ever had, Wilkes guides you on an adventure in mathematical creation that will radically change the way you think about math. Revealing the beauty and simplicity of this timeless subject, Burn Math Class turns everything that seems difficult about mathematics upside down and sideways until you understand just how easy math can be.