## Similar

If you ever regretted not taking physics in college--or simply want to know how to think like a physicist--this is the book for you. In this bestselling introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

Now updated with 30% new material, Roark Formulas for Stress and Strain, Seventh Edition, is the ultimate resource for designers, engineers, and analysts who need to calculate loads and stress. This landmark reference from Warren Young and Richard Budynas provides you with equations and diagrams of structural properties in an easy-to-use, thumb-through format. Updated, with a user-friendly page layout, this new edition includes expanded coverage of joints, bearing and shear stress, experimental stress analysis, and stress concentrations, as well as material behavior coverage and stress and strain measurement. You’ll also find expanded tables and cases; improved notations and figures in the tables; consistent table and equation numbering; and verification of correction factors.

Drawing on physics and mechanical engineering, Steven Vogel looks at how animals swim and fly, modes of terrestrial locomotion, organism responses to winds and water currents, circulatory and suspension-feeding systems, and the relationship between size and mechanical design. He also investigates links between the properties of biological materials--such as spider silk, jellyfish jelly, and muscle--and their structural and functional roles. Early chapters and appendices introduce relevant physical variables for quantification, and problem sets are provided at the end of each chapter. Comparative Biomechanics is useful for physical scientists and engineers seeking a guide to state-of-the-art biomechanics. For a wider audience, the textbook establishes the basic biological context for applied areas--including ergonomics, orthopedics, mechanical prosthetics, kinesiology, sports medicine, and biomimetics--and provides materials for exhibit designers at science museums.

Problem sets at the ends of chapters Appendices cover basic background information Updated and expanded documentation and materials Revised figures and text Increased coverage of friction, viscoelastic materials, surface tension, diverse modes of locomotion, and biomimeticsHelps Students Better Understand Numerical Methods through Use of MATLAB®

The authors uniquely emphasize both theoretical numerical analysis and practical implementation of the algorithms in MATLAB, making the book useful for students in computational science and engineering. They provide students with simple, clear implementations instead of sophisticated usages of MATLAB functions.

All the Material Needed for a Numerical Analysis Course

Based on the authors’ own courses, the text only requires some knowledge of computer programming, advanced calculus, and difference equations. It includes practical examples, exercises, references, and problems, along with a solutions manual for qualifying instructors. Students can download MATLAB code from www.crcpress.com, enabling them to easily modify or improve the codes to solve their own problems.

Helping you overcome these hurdles, Hydraulic Power System Analysis demonstrates modern computer-aided analytical techniques used to model nonlinear, dynamic fluid power systems. Following an overview of fluid power, the authors examine various relevant fluid properties, energy calculations, and steady state and dynamic analysis along with a review of automatic control theory. Turning to modeling, the next few chapters address valves and motors and then apply dynamic modeling to examples relating to pumps, hydrostatic transmissions, and valves. The book includes a unique chapter showing how to combine flow resistance equations with the differential equations governing dynamic system performance. The final chapter translates electrical circuit theory concepts to noise attenuation in fluid power systems.

Illustrated with many equations, practical computer modeling examples, and exercises, Hydraulic Power System Analysis provides a much-needed modernization of dynamic modeling for fluid power systems using powerful computational tools.

About the authors . . .

D. M. PIRRO is the Equipment Builder and OEM Manager, ExxonMobil Corporation, Fairfax, Virginia. The author or contributing editor of several scholarly articles on synthetic lubes, environmental awareness applications, grease technology, lubricant interchangeability, and oil analysis, Mr. Pirro is a Certified Lubrication Specialist and a member of the Society of Tribologists and Lubrication Engineers and the Association of Manufacturing Technology. He received the B.S. degree (1978) in mechanical engineering and the B.A. degree (1978) in business administration from Rutgers University, New Brunswick, New Jersey.

A. A. WESSOL is a part-time Lubrication Consultant for the ExxonMobil Corporation in Manassas, Virginia. Mr. Wessol retired from the Mobil Corporation after 24 years in various advanced technical positions. The author or coauthor of numerous professional papers on the environmental aspects of lubrication, plant engineering, hydraulics, and pneumatics, he received the B.S. degree (1972) in mathematics, physics, and chemistry from the University of Pittsburgh, Pennsylvania.

What’s New in This Edition:

Includes more than 150 full-color images which significantly improve the reader’s ability to understand pump drawings and curves

Introduces a new chapter on pump case studies in a format that provides case study background, analysis, solutions, and lessons learned

Presents important new updates and additions to other chapters

Includes a ten-step procedure for determining total pump head

Discusses allowable and preferred operating ranges for centrifugal pumps

Provides charts covering maximum and normally attainable pump efficiencies, performance corrections for slurry pumps, and mechanical seal flush plans

Pump Characteristics and Applications, Third Edition is appropriate for readers with all levels of technical experience, including engineering and pump industry professionals, pump operators and maintenance technicians, upper-level undergraduate and graduate students in mechanical engineering, and students in engineering technology programs.

Finite Element Modeling and Simulation with ANSYS Workbench combines finite element theory with real-world practice. Providing an introduction to finite element modeling and analysis for those with no prior experience, and written by authors with a combined experience of 30 years teaching the subject, this text presents FEM formulations integrated with relevant hands-on applications using ANSYS Workbench for finite element analysis (FEA). Incorporating the basic theories of FEA and the use of ANSYS Workbench in the modeling and simulation of engineering problems, the book also establishes the FEM method as a powerful numerical tool in engineering design and analysis.

Include FEA in Your Design and Analysis of Structures Using ANSYS Workbench

The authors reveal the basic concepts in FEA using simple mechanics problems as examples, and provide a clear understanding of FEA principles, element behaviors, and solution procedures. They emphasize correct usage of FEA software, and techniques in FEA modeling and simulation. The material in the book discusses one-dimensional bar and beam elements, two-dimensional plane stress and plane strain elements, plate and shell elements, and three-dimensional solid elements in the analyses of structural stresses, vibrations and dynamics, thermal responses, fluid flows, optimizations, and failures. Contained in 12 chapters, the text introduces ANSYS Workbench through detailed examples and hands-on case studies, and includes homework problems and projects using ANSYS Workbench software that are provided at the end of each chapter.

Covers solid mechanics and thermal/fluid FEA Contains ANSYS Workbench geometry input files for examples and case studies Includes two chapters devoted to modeling and solution techniques, design optimization, fatigue, and buckling failure analysis Provides modeling tips in case studies to provide readers an immediate opportunity to apply the skills they learn in a problem-solving contextFinite Element Modeling and Simulation with ANSYS Workbench benefits upper-level undergraduate students in all engineering disciplines, as well as researchers and practicing engineers who use the finite element method to analyze structures.

The coverage of the book includes 13 topics relevant to classical mechanics, such as integration of one-dimensional equations of motion; the Hamiltonian equations of motion; and adiabatic invariants.

The book will be of great use to physics students studying classical mechanics.

Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of present applications and past experience. This book also examines the relevance of design and feed-stock parameters to the operation of a CFB boiler; designs of mechanical components, including cyclones, air distributor grids, and solid recycle systems; and special problems CVB boilers present with construction materials.

Written by experts from around the world, the handbook covers all major classes of hydraulic fluids in detail, delving into chemistry, design, fluid maintenance and selection, and other key concepts. It also offers a rigorous overview of hydraulic fluid technology and evaluates the ecological benefits of water and its use as an important alternative technology. This complete overview discusses pumps and motors, valves, and reservoir design, as well as fluid properties and associated topics. These include air entrainment, modulus, lubrication and wear assessment by bench and pump testing, biodegradability, and fire resistance. Contributors also present particularly important material on biodegradable fluids and the use of water as a hydraulic fluid.

As the foremost resource on the design, selection, and testing of hydraulic systems and fluids used in engineering applications, this book contains new illustrations, data tables, and practical examples, all updated with essential information on the latest methods. To streamline presentation, relevant content from the first edition has been integrated into this new version, where appropriate. The result is a reference that helps readers develop an unparalleled understanding of the total hydraulic system, including essential hardware, fluid properties, and hydraulic lubricants.

This book provides an introduction into the wide range of activities that are possible in aqueous mixtures. It is organized to facilitate understanding of the main features, outlines the main applications, and gives access to further information

Summarizes fundamental properties of water for engineering applicationsCompares process and reactor designsEvaluates processes from thermodynamic, economic, and social impact viewpointsTaking the bang-whiz-thud approach, Denny first talks about internal ballistics—Bang!—from before gunpowder to the development of modern firearms. External ballistics—Whiz!—are next, with discussions about short- and long-range trajectories. Denny’s lesson ends with a Thud!—an explanation of terminal ballistics.

Throughout, Denny conveys applicable physics principles in a way that will appeal to technology buffs and ballistics enthusiasts alike. His fun and factual explanations are free of complicated equations; notes cover the key aspects of ballistics physics for the more technically inclined.

Denny has perfected this engaging balance of science and story. For study or hobby, Their Arrows Will Darken the Sun is an entertaining guide to the world of ballistics.

Dynamics of Mechanical Systems provides a vehicle for mastering all of this. Focusing on the fundamental procedures behind dynamic analyses, the authors take a vector-oriented approach and lead readers methodically from simple concepts and systems through the analysis of complex robotic and bio-systems. A careful presentation that balances theory, methods, and applications gives readers a working knowledge of configuration graphs, Euler parameters, partial velocities and partial angular velocities, generalized speeds and forces, lower body arrays, and Kane's equations.

Evolving from more than three decades of teaching upper-level engineering courses, Dynamics of Mechanical Systems enables readers to obtain and refine skills ranging from the ability to perform insightful hand analyses to developing algorithms for numerical/computer analyses. Ultimately, it prepares them to solve real-world problems and make future advances in mechanisms, manipulators, and robotics.

Integrated throughout the text are real-world applications that emphasize the relevance of thermodynamics principles to some of the most critical problems and issues of today, including a wealth of coverage of topics related to energy and the environment, biomedical/bioengineering, and emerging technologies.

Chapter 1 of this book deals with the extraordinary physico-chemical properties of the water molecule while Chapter 2 provides insight on theories regarding the origin of water on Earth. In the third chapter, the author focuses on the chemical composition of the main water reservoirs of our planet. Chapters 4 and 5 discuss water’s relationship with plate tectonics and life, respectively. The sixth and final chapter uses stable isotope tracking to look into the water cycle and past climates.

Contents

1. Water: A Molecule Endowed with Extraordinary Physicochemical Properties.

2. Theories about the Origin of Water on Earth.

3. The Main Water Reservoirs on Earth and their Chemical Composition.

4. Water and Plate Tectonics.

5. Water and Life.

6. Stable Isotope Tracking: Water Cycles and Climates of the Past.

The presence of water on Earth is discussed on the basis of the various theories about its origin such as a massive degassing of the primitive parent bodies that built our planet as well as a late addition from comets that collided with its surface. The extraordinary physico-chemical properties of the water molecule combined with its abundance and distribution over the Earth’s surface have contributed to regulating the global climate and favoring the evolution of species for more than 4 billion years. The early emergence of life in the deep ocean and its further diversification were closely linked to the global water cycle whose dynamics result from the energy balance between solar radiation and the internal heat flux of the Earth.

Within this context, readers will find valuable information that explores refrigeration and heat pump systems using natural refrigerants, polygeneration systems, the energy efficiency of thermal systems, the utilization of low temperature waste heat, and cleaner production.

The book also examines the technical, economic, and environmental reasons of R718 refrigeration/heat pump systems and how they are competitive with traditional systems, serving as a valuable reference for engineers who work in the design and construction of thermal plants and systems, and those who wish to specialize in the use of R718 as a refrigerant in these systems.

Describes existing novel R718 turbo compressor and ejector refrigeration/heat pump systems and technologiesProvides procedures calculating and optimizing cycles, system components, and system structuresEstimates the performance characteristics of the thermal systemsExposes the possibilities for wider applications of R718 systems in the field of refrigeration and heat pumpsThis book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large number of problems and exercises.

In an age of custom-fabricated, do-it-yourself product design and creation, the collective potential of a million garage tinkerers and enthusiasts is about to be unleashed, driving a resurgence of American manufacturing. A generation of “Makers” using the Web’s innovation model will help drive the next big wave in the global economy, as the new technologies of digital design and rapid prototyping gives everyone the power to invent--creating “the long tail of things”.

The book contains numerous examples and their solutions. Emphasis is placed upon student participation in solving the problems. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges.

Volume 1 deals with Statics; Volume 3 contains Particle Dynamics and Rigid Body Dynamics.

Mechanics Principles V10. eBook covers all the topics of this popular software title used in schools and colleges worldwide for over twenty years.

See Additional Notes for instructions to download the highly interactive PC software. Used in thousands of schools and colleges worldwide the software is designed to work as a traditional textbook on your PC screen.

Comprising hundreds of menu selected colourful topics where the graphic images (from your eBook) are brought to life for every value change along with many additional learning software features.

A combined eBook and educational software package at a tiny fraction of the previously published price.

Features of FREE Software (Incl. Physically Disabled Users) to accompany your eBook: Last published 2010 - All Windows platforms including Windows 8 - Hundreds of color fully interactive images where every value change updates the graphics and calculations - Explanatory text - Related topics are presented together in single windows - Default typical values - Full color printing single page with image for user values, text, calculations and graphs if part of topic - Copy & Paste (a feature that was used to construct all the accompanying eBook content) - Ideal for teachers making student hand-outs and assignments - Calculations and graphing widows open independently to check students calculations - Full screen whiteboard technology for whole class teaching (teachers packs eBooks and School Site Licence) - Self-Assessment questions with random values with multiple choice answers - Electronics and maths Toolbox (electronics and STEM titles) as used by professionals to quickly make all those standard calculations without having to remember the formula - For Business Studies Students there are additional features to interactively explore Break-Even charts and Supply & Demand curves - Drop down menus with topic search - Click forward and back through topics makes revision more enjoyable -Specialist Editors for equations, logic, graphs, statistics and algebra enable calculations and equations from any standard textbook to be inserted and explored changing just one value or variable at a time - BASIC programmer with full instructions to learn in minutes using statement wizards - For physically disabled users software can be operated independently of the keyboard using mouse clicks only or other voice, sight or wind activated pointing devices to choose topics and change values.

* Mechanics topics will be found in the software title Electrical, Mechanics and Maths V10 Educational Software package. Introduction, Basic Electronics, Conductors and Insulators, Resistor Value Test, Simple DC Circuits, Types of Switching, Variable Voltages, Ohm's Law, DC Voltage, DC Current, Series/Parallel Resistors, AC Measurements, AC Voltage and Current, AC Theory, RCL Series Circuits, RCL Parallel Circuits, Capacitance, Capacitors, Inductance, Inductors, Impedance, Circuit Theorems, Complex Numbers, DC Power, AC Power, Silicon Controlled Rectifier, Power Supplies, Voltage Regulation, Magnetism, Electric Machines, Transformers, Three Phase Systems, Energy Transfer and Cost, Atomic Structures, Diode Theory, Diode Applications, Transistor Theory, Bipolar Transistor, Transistor Configurations, Active Transistor Circuits, Field Effect Transistors, Analogue Multi-meter, Component Testing. Mathematics. Number Systems, Number Conversion, Number Types, Compound Measures, Roots, Angles and Parallels, Triangle Ratios, Triangle Angles, Percentages, Ratios, Fractions, Vectors, Laws, Algebra 0., Algebra 1., Algebra 2., Mathematical Rules, Powers and Indices, Simplifying, Linear Equations, Graphing, Slope and Translation, Curves and Angle Conversion, Personal Finance, Data Analysis.

Reliability-based Structural Design provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. Probability theory, statistic methods, and reliability analysis methods including Monte Carlo Sampling, Latin hypercube sampling, first and second-Order reliability methods, stochastic finite element method, and stochastic optimization are discussed. In addition, the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion, for the reliability analysis of practical engineering problems is also examined. Detailed examples of practical engineering applications including an uninhabited joined-wing aircraft and a supercavitating torpedo are presented to illustrate the effectiveness of these methods.

Reliability-based Structural Design will be a valuable reference for graduate and post graduate students studying structural reliability, probabilistic analysis and optimization under uncertainty; as well as engineers, researchers, and technical managers who are concerned with theoretical fundamentals, computational implementations and applications for probabilistic analysis and design.

What’s New in the Second Edition:

Includes computer examples in Mathcad (available on the CRC website) Adds a section of color plates, to better help readers visualize the physical concepts of ballistics Contains sections on modern explosives equations of state for detonation physics modeling and on probability of hit Provides a solutions manual for those teaching college and training coursesThis book covers exterior ballistics, exploring the physics behind trajectories, including linear and nonlinear aeroballistics, and focuses on the effects of projective impact, including details on shock physics, shaped charges, penetration, fragmentation, and wound ballistics.

Reviews and integrates the fundamental science and engineering concepts involved in guns and ammunition Uses straightforward, easy-to-read style, and careful development of complex topics Shares insights rooted in the experience of renowned experts, many associated with the National Defense Industrial Association (NDIA) and International Ballistics SocietyThe field of ballistics comprises three main areas of specialization: interior, exterior, and terminal ballistics. This book explains all three areas, offering a seamless presentation of the complex phenomena that occur during the launch, flight, and impact of a projectile.

This book gives a survey of astrophysics at the advanced undergraduate level, providing a physics-centred analysis of a broad range of astronomical systems. It originates from a two-semester course sequence at Rutgers University that is meant to appeal not only to astrophysics students but also more broadly to physics and engineering students. The organisation is driven more by physics than by astronomy; in other words, topics are first developed in physics and then applied to astronomical systems that can be investigated, rather than the other way around.

The first half of the book focuses on gravity. The theme in this part of the book, as well as throughout astrophysics, is using motion to investigate mass. The goal of Chapters 2-11 is to develop a progressively richer understanding of gravity as it applies to objects ranging from planets and moons to galaxies and the universe as a whole. The second half uses other aspects of physics to address one of the big questions. While “Why are we here?” lies beyond the realm of physics, a closely related question is within our reach: “How did we get here?” The goal of Chapters 12-20 is to understand the physics behind the remarkable story of how the Universe, Earth and life were formed. This book assumes familiarity with vector calculus and introductory physics (mechanics, electromagnetism, gas physics and atomic physics); however, all of the physics topics are reviewed as they come up (and vital aspects of vector calculus are reviewed in the Appendix).

This comprehensive book is an earnest endeavour to apprise the readers with a thorough understanding of all important basic concepts and methods of fluid mechanics and hydraulic machines. The text is organised into sixteen chapters, out of which the first twelve chapters are more inclined towards imparting the conceptual aspects of fluids mechanics, while the remaining four chapters accentuate more on the details of hydraulic machines. The book is supplemented with solutions manual for instructors containing detailed solutions of all chapter-end unsolved problems. Primarily intended as a text for the undergraduate students of civil, mechanical, chemical and aeronautical engineering, this book will be of immense use to the postgraduate students of hydraulics engineering, water resources engineering, and fluids engineering.

Key features

• The book describes all concepts in easy-to-grasp language with diagrammatic representation and practical examples.

• A variety of worked-out examples are included within the text, illustrating the wide applications of fluid mechanics.

• Every chapter comprises summary that presents the main idea and relevant details of the topics discussed.

• Almost all chapters incorporate objective type questions of previous years’ GATE examinations, along with their answers and in-depth explanations.

• Previous years’ IES conventional questions are provided at the end of most of the chapters.

• A set of theoretical questions and numerous unsolved numerical problems are provided at the chapter-end to help the students from practice pointof-view.

• Every chapter consists of a section Suggested Reading comprising a list of publications that the students may refer for more detailed information.

The material added to this new edition will provide insights gathered over 45 years of studying fluid mechanics. Many of these insights, such as universal dimensionless similarity scaling for the laminar boundary layer equations, are available nowhere else. Likewise for the generalized vector field derivatives. Other material, such as the generalized stream function treatment, shows how stream functions may be used in three-dimensional flows. The CFD chapter enables computations of some simple flows and provides entrée to more advanced literature.

*New and generalized treatment of similar laminar boundary layers.

*Generalized treatment of streamfunctions for

three-dimensional flow .

*Generalized treatment of vector field derivatives.

*Expanded coverage of gas dynamics.

*New introduction to computational fluid dynamics.

*New generalized treatment of boundary conditions in fluid mechanics.

*Expanded treatment of viscous flow with more examples.

The most valuable and reader-friendly reference available for engineers concerned with the optimization of liquid transportation through pipelines

The book fosters an intuitive understanding of structural behavior based on problem solving experience for students of civil engineering and architecture who have been exposed to the basic concepts of engineering mechanics and mechanics of materials. Distinct from other undergraduate textbooks, the authors of Fundamentals of Structural Engineering, 2/e embrace the notion that engineers reason about behavior using simple models and intuition they acquire through problem solving. The perspective adopted in this text therefore develops this type of intuition by presenting extensive, realistic problems and case studies together with computer simulation, allowing for rapid exploration of how a structure responds to changes in geometry and physical parameters. The integrated approach employed in Fundamentals of Structural Engineering, 2/e make it an ideal instructional resource for students and a comprehensive, authoritative reference for practitioners of civil and structural engineering.