## Similar Ebooks

Math is boring, says the mathematician and comedian Matt Parker. Part of the problem may be the way the subject is taught, but it's also true that we all, to a greater or lesser extent, find math difficult and counterintuitive. This counterintuitiveness is actually part of the point, argues Parker: the extraordinary thing about math is that it allows us to access logic and ideas beyond what our brains can instinctively do—through its logical tools we are able to reach beyond our innate abilities and grasp more and more abstract concepts.

In the absorbing and exhilarating Things to Make and Do in the Fourth Dimension, Parker sets out to convince his readers to revisit the very math that put them off the subject as fourteen-year-olds. Starting with the foundations of math familiar from school (numbers, geometry, and algebra), he reveals how it is possible to climb all the way up to the topology and to four-dimensional shapes, and from there to infinity—and slightly beyond.

Both playful and sophisticated, Things to Make and Do in the Fourth Dimension is filled with captivating games and puzzles, a buffet of optional hands-on activities that entices us to take pleasure in math that is normally only available to those studying at a university level. Things to Make and Do in the Fourth Dimension invites us to re-learn much of what we missed in school and, this time, to be utterly enthralled by it.

What if you had to take an art class in which you were only taught how to paint a fence? What if you were never shown the paintings of van Gogh and Picasso, weren't even told they existed? Alas, this is how math is taught, and so for most of us it becomes the intellectual equivalent of watching paint dry.

In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we've never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space.

Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man's journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century's leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat's last theorem, that had seemed intractable before.

At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.

Throughout history, scientists have come up with theories and ideas that just don't seem to make sense. These we call paradoxes. The paradoxes Al-Khalili offers are drawn chiefly from physics and astronomy and represent those that have stumped some of the finest minds. For example, how can a cat be both dead and alive at the same time? Why will Achilles never beat a tortoise in a race, no matter how fast he runs? And how can a person be ten years older than his twin?

With elegant explanations that bring the reader inside the mind of those who've developed them, Al-Khalili helps us to see that, in fact, paradoxes can be solved if seen from the right angle. Just as surely as Al-Khalili narrates the enduring fascination of these classic paradoxes, he reveals their underlying logic. In doing so, he brings to life a select group of the most exciting concepts in human knowledge. Paradox is mind-expanding fun.

Part of the reason for the book's success is its marvelously varied assortment of brainteasers ranging from simple "catch" riddles to difficult problems (none, however, requiring advanced mathematics). Many of the puzzles will be new to Western readers, while some familiar problems have been clothed in new forms. Often the puzzles are presented in the form of charming stories that provide non-Russian readers with valuable insights into contemporary Russian life and customs. In addition, Martin Gardner, former editor of the Mathematical Games Department, Scientific American, has clarified and simplified the book to make it as easy as possible for an English-reading public to understand and enjoy. He has been careful, moreover, to retain nearly all the freshness, warmth, and humor of the original.

Lavishly illustrated with over 400 clear diagrams and amusing sketches, this inexpensive edition of the first English translation will offer weeks or even months of stimulating entertainment. It belongs in the library of every puzzlist or lover of recreational mathematics.

In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.

Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.

Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..

With coverage spanning the foundations of origami construction and advanced methods using both paper and pencil and custom-built free software, Origami Design Secrets helps readers cultivate the intuition and skills necessary to develop their own designs. It takes them beyond merely following a recipe to crafting a work of art.

The present volume contains a rich selection of 70 of the best of these brain teasers, in some cases including references to new developments related to the puzzle. Now enthusiasts can challenge their solving skills and rattle their egos with such stimulating mind-benders as The Returning Explorer, The Mutilated Chessboard, Scrambled Box Tops, The Fork in the Road, Bronx vs. Brooklyn, Touching Cigarettes, and 64 other problems involving logic and basic math. Solutions are included.

Trigonometry deals with the relationship between the sides and angles of triangles... mostly right triangles. In practical use, trigonometry is a friend to astronomers who use triangulation to measure the distance between stars. Trig also has applications in fields as broad as financial analysis, music theory, biology, medical imaging, cryptology, game development, and seismology.

From sines and cosines to logarithms, conic sections, and polynomials, this friendly guide takes the torture out of trigonometry, explaining basic concepts in plain English and offering lots of easy-to-grasp example problems. It also explains the "why" of trigonometry, using real-world examples that illustrate the value of trigonometry in a variety of careers.

Tracks to a typical Trigonometry course at the high school or college level Packed with example trig problems From the author of Trigonometry Workbook For DummiesTrigonometry For Dummies is for any student who needs an introduction to, or better understanding of, high-school to college-level trigonometry.

Is it possible that the answer to becoming a more efficient and effective thinker is learning how to forget? Yes! Mike Byster will show you how mastering this extraordinary technique—forgetting unnecessary information, sifting through brain clutter, and focusing on only important nuggets of data—will change the quality of your work and life balance forever.

Using the six tools in The Power of Forgetting, you’ll learn how to be a more agile thinker and productive individual. You will overcome the staggering volume of daily distractions that lead to to brain fog, an inability to concentrate, lack of creativity, stress, anxiety, nervousness, angst, worry, dread, and even depression. By training your brain with Byster’s exclusive quizzes and games, you’ll develop the critical skills to become more successful in all that you do, each and every day.

Bellos has traveled all around the globe and has plunged into history to uncover fascinating stories of mathematical achievement, from the breakthroughs of Euclid, the greatest mathematician of all time, to the creations of the Zen master of origami, one of the hottest areas of mathematical work today. Taking us into the wilds of the Amazon, he tells the story of a tribe there who can count only to five and reports on the latest findings about the math instinct—including the revelation that ants can actually count how many steps they’ve taken. Journeying to the Bay of Bengal, he interviews a Hindu sage about the brilliant mathematical insights of the Buddha, while in Japan he visits the godfather of Sudoku and introduces the brainteasing delights of mathematical games.

Exploring the mysteries of randomness, he explains why it is impossible for our iPods to truly randomly select songs. In probing the many intrigues of that most beloved of numbers, pi, he visits with two brothers so obsessed with the elusive number that they built a supercomputer in their Manhattan apartment to study it. Throughout, the journey is enhanced with a wealth of intriguing illustrations, such as of the clever puzzles known as tangrams and the crochet creation of an American math professor who suddenly realized one day that she could knit a representation of higher dimensional space that no one had been able to visualize.

Whether writing about how algebra solved Swedish traffic problems, visiting the Mental Calculation World Cup to disclose the secrets of lightning calculation, or exploring the links between pineapples and beautiful teeth, Bellos is a wonderfully engaging guide who never fails to delight even as he edifies. Here’s Looking at Euclid is a rare gem that brings the beauty of math to life.

The two-part selection of puzzles and paradoxes begins with examinations of the nature of infinity and some curious systems related to Gödel's theorem. The first three chapters of Part II contain generalized Gödel theorems. Symbolic logic is deferred until the last three chapters, which give explanations and examples of first-order arithmetic, Peano arithmetic, and a complete proof of Gödel's celebrated result involving statements that cannot be proved or disproved. The book also includes a lively look at decision theory, better known as recursion theory, which plays a vital role in computer science.

Key features of Number Theory: Structures, Examples, and Problems:

* A rigorous exposition starts with the natural numbers and the basics.

* Important concepts are presented with an example, which may also emphasize an application. The exposition moves systematically and intuitively to uncover deeper properties.

* Topics include divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, quadratic residues, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems are covered.

* Unique exercises reinforce and motivate the reader, with selected solutions to some of the problems.

* Glossary, bibliography, and comprehensive index round out the text.

Written by distinguished research mathematicians and renowned teachers, this text is a clear, accessible introduction to the subject and a source of fascinating problems and puzzles, from advanced high school students to undergraduates, their instructors, and general readers at all levels.

There’s a famous piece of writing advice—offered by Ernest Hemingway, Stephen King, and myriad writers in between—not to use -ly adverbs like “quickly” or “angrily.” It sounds like solid advice, but can we actually test it? If we were to count all the -ly adverbs these authors used in their careers, do they follow their own advice? What’s more, do great books in general—the classics and the bestsellers—share this trait?

In the age of big data we can answer questions like these in the blink of an eye. In Nabokov’s Favorite Word Is Mauve, a “literary detective story: fast-paced, thought-provoking, and intriguing” (Brian Christian, coauthor of Algorithms to Live By), statistician and journalist Ben Blatt explores the wealth of fun findings that can be discovered by using text and data analysis. He assembles a database of thousands of books and hundreds of millions of words, and then he asks the questions that have intrigued book lovers for generations: What are our favorite authors’ favorite words? Do men and women write differently? Which bestselling writer uses the most clichés? What makes a great opening sentence? And which writerly advice is worth following or ignoring?

All of Blatt’s investigations and experiments are original, conducted himself, and no math knowledge is needed to enjoy the book. On every page, there are new and eye-opening findings. By the end, you will have a newfound appreciation of your favorite authors and also come away with a fresh perspective on your own writing. “Blatt’s new book reveals surprising literary secrets” (Entertainment Weekly) and casts an x-ray through literature, allowing us to see both the patterns that hold it together and the brilliant flourishes that allow it to spring to life.

Hidden symmetries were first discovered nearly two hundred years ago by French mathematician évariste Galois. They have been used extensively in the oldest and largest branch of mathematics--number theory--for such diverse applications as acoustics, radar, and codes and ciphers. They have also been employed in the study of Fibonacci numbers and to attack well-known problems such as Fermat's Last Theorem, Pythagorean Triples, and the ever-elusive Riemann Hypothesis. Mathematicians are still devising techniques for teasing out these mysterious patterns, and their uses are limited only by the imagination.

The first popular book to address representation theory and reciprocity laws, Fearless Symmetry focuses on how mathematicians solve equations and prove theorems. It discusses rules of math and why they are just as important as those in any games one might play. The book starts with basic properties of integers and permutations and reaches current research in number theory. Along the way, it takes delightful historical and philosophical digressions. Required reading for all math buffs, the book will appeal to anyone curious about popular mathematics and its myriad contributions to everyday life.

These three-dimensional models are created from a number of small pieces of paper that are easily folded and then cleverly fit together to form a spectacular shape. They range from paper polyhedra to bristling buckyballs that are reminiscent of sea urchins—to ornate flower-like spheres.

Each piece of paper is held by the tension of the other papers—demonstrating the remarkable hidden properties of paper, which is at the same time flexible but also strong!

Author Byriah Loper has been creating modular origami sculptures for just five years, but in that time, he's pushed the upper limits of the art form with some of the largest, most complex geometric paper constructions ever assembled. While many geo-modular origami artists focus on creating dense floral spheres, Byriah has pioneered the open, linear "wire frame" approach, which results in a very complex-looking model that reveals the interior of its form. He exhibits his sculptures annually at the Origami USA convention in New York, and was recently a featured artist at the "Surface to Structure" exhibition at the Cooper Union gallery in the East Village.

A great way to learn origami, the easy-to-follow diagrams and step-by-step instructions in this book show you how to fold the paper components and then assemble them to create 22 incredible models. Each model is a new challenge, and the paper sculptures you create look fantastic on your desk or shelf!

An Entertaining and Enlightening Guide to the Who, What, and Why of String Theory, now also available in an updated reflowable electronic format compatible with mobile devices and e-readers.

During the last 50 years, numerous physicists have tried to unravel the secrets of string theory. Yet why do these scientists work on a theory lacking experimental confirmation?

Why String Theory? provides the answer, offering a highly readable and accessible panorama of the who, what, and why of this large aspect of modern theoretical physics. The author, a theoretical physics professor at the University of Oxford and a leading string theorist, explains what string theory is and where it originated. He describes how string theory fits into physics and why so many physicists and mathematicians find it appealing when working on topics from M-theory to monsters and from cosmology to superconductors.

According to MSNBC, having a child makes you stupid. You actually lose IQ points. Good Morning America has announced that natural blondes will be extinct within two hundred years. Pundits estimated that there were more than a million demonstrators at a tea party rally in Washington, D.C., even though roughly sixty thousand were there. Numbers have peculiar powers-they can disarm skeptics, befuddle journalists, and hoodwink the public into believing almost anything.

"Proofiness," as Charles Seife explains in this eye-opening book, is the art of using pure mathematics for impure ends, and he reminds readers that bad mathematics has a dark side. It is used to bring down beloved government officials and to appoint undeserving ones (both Democratic and Republican), to convict the innocent and acquit the guilty, to ruin our economy, and to fix the outcomes of future elections. This penetrating look at the intersection of math and society will appeal to readers of Freakonomics and the books of Malcolm Gladwell.

In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.

Some images inside the book are unavailable due to digital copyright restrictions.

Unlike many authors, however, Mr. Friedberg encourages students to think about the imaginative, playful qualities of numbers as they consider such subjects as primes and divisibility, quadratic forms and residue arithmetic and quadratic reciprocity and related theorems. Moreover, the author has included a number of unusual features to challenge and stimulate students: some of the original problems in Diophantus' Arithmetica, proofs of Fermat's Last Theorem for the exponents 3and 4, and two proofs of Wilson's Theorem.

Readers with a mathematical bent will enjoy and benefit from these entertaining and thought-provoking adventures in the fascinating realm of number theory. Mr. Friedberg is currently Professor of Physics at Barnard College, where he is Chairman of the Department of Physics and Astronomy.

Kick start your neurons at Level 1 with puzzles involving hidden words, math calculations, and logical conundrums. At Level 2, fire up your synapses with cryptograms, scrambled sentences, and visual challenges. And activate your brain at Level 3 with fill-in-the-blanks, search-a-words, magic squares, and much more. If you get stumped, an answer key with complete solutions appears at the end.

The book begins with a systematic study of real numbers, understood to be a set of objects satisfying certain definite axioms. The concepts of a mathematical structure and an isomorphism are introduced in Chapter 2, after a brief digression on set theory, and a proof of the uniqueness of the structure of real numbers is given as an illustration. Two other structures are then introduced, namely n-dimensional space and the field of complex numbers.

After a detailed treatment of metric spaces in Chapter 3, a general theory of limits is developed in Chapter 4. Chapter 5 treats some theorems on continuous numerical functions on the real line, and then considers the use of functional equations to introduce the logarithm and the trigonometric functions. Chapter 6 is on infinite series, dealing not only with numerical series but also with series whose terms are vectors and functions (including power series). Chapters 7 and 8 treat differential calculus proper, with Taylor's series leading to a natural extension of real analysis into the complex domain. Chapter 9 presents the general theory of Riemann integration, together with a number of its applications. Analytic functions are covered in Chapter 10, while Chapter 11 is devoted to improper integrals, and makes full use of the technique of analytic functions.

Each chapter includes a set of problems, with selected hints and answers at the end of the book. A wealth of examples and applications can be found throughout the text. Over 340 theorems are fully proved.

The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few.

Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.

A brief and breezy explanation of the new language of mathematics precedes a smorgasbord of such thought-provoking subjects as the googolplex (the largest definite number anyone has yet bothered to conceive of); assorted geometries — plane and fancy; famous puzzles that made mathematical history; and tantalizing paradoxes. Gamblers receive fair warning on the laws of chance; a look at rubber-sheet geometry twists circles into loops without sacrificing certain important properties; and an exploration of the mathematics of change and growth shows how calculus, among its other uses, helps trace the path of falling bombs.

Written with wit and clarity for the intelligent reader who has taken high school and perhaps college math, this volume deftly progresses from simple arithmetic to calculus and non-Euclidean geometry. It “lives up to its title in every way [and] might well have been merely terrifying, whereas it proves to be both charming and exciting." — Saturday Review of Literature.

How do you apply game theory to select who should be on your Christmas shopping list? What equations should you use to decorate the Christmas tree? Will calculations show Santa is getting steadily thinner—shimmying up and down chimneys for a whole night—or fatter—as he munches on cookies and milk in billions of houses across the world?

In The Indisputable Existence of Santa Claus, distinguished mathematicians Hannah Fry and Thomas Oléron Evans demonstrate, with eminently readable clarity, how applied mathematics are so thoroughly interwoven throughout our everyday lives by explaining mathematical concepts through one very merry motif: Christmas.

In their quest to provide mathematical proof for the existence of Santa, the authors take readers on a festive journey through a traditional holiday season, wherein every activity, from wrapping presents to playing board games to cooking the perfect turkey, is painstakingly and hilariously analyzed. Because who hasn’t always wondered how to set up a mathematically perfect Secret Santa?

Lighthearted and diverting with Christmasy diagrams, sketches and graphs, equations, Markov chains, and matrices, The Indisputable Existence of Santa Claus brightens up the bleak midwinter with stockingsful of mathematical marvels.

Lawrence Weinstein and John Adam present an eclectic array of estimation problems that range from devilishly simple to quite sophisticated and from serious real-world concerns to downright silly ones. How long would it take a running faucet to fill the inverted dome of the Capitol? What is the total length of all the pickles consumed in the US in one year? What are the relative merits of internal-combustion and electric cars, of coal and nuclear energy? The problems are marvelously diverse, yet the skills to solve them are the same. The authors show how easy it is to derive useful ballpark estimates by breaking complex problems into simpler, more manageable ones--and how there can be many paths to the right answer. The book is written in a question-and-answer format with lots of hints along the way. It includes a handy appendix summarizing the few formulas and basic science concepts needed, and its small size and French-fold design make it conveniently portable. Illustrated with humorous pen-and-ink sketches, Guesstimation will delight popular-math enthusiasts and is ideal for the classroom.

In A Cultural History of Physics, Hungarian scientist and educator Károly Simonyi succeeds in bridging this chasm by describing the experimental methods and theoretical interpretations that created scientific knowledge, from ancient times to the present day, within the cultural environment in which it was formed. Unlike any other work of its kind, Simonyi’s seminal opus explores the interplay of science and the humanities to convey the wonder and excitement of scientific development throughout the ages.

These pages contain an abundance of excerpts from original resources, a wide array of clear and straightforward explanations, and an astonishing wealth of insight, revealing the historical progress of science and inviting readers into a dialogue with the great scientific minds that shaped our current understanding of physics.

Beautifully illustrated, accurate in its scientific content and broad in its historical and cultural perspective, this book will be a valuable reference for scholars and an inspiration to aspiring scientists and humanists who believe that science is an integral part of our culture.

Illustrated by Karl H. Hofmann

The authors, a pair of noted mathematicians, start with a discussion of divisibility and proceed to examine Gaussian primes (their determination and role in Fermat's theorem); polynomials over a field (including the Eisenstein irreducibility criterion); algebraic number fields; bases (finite extensions, conjugates and discriminants, and the cyclotomic field); and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture (concluding with discussions of Pythagorean triples, units in cyclotomic fields, and Kummer's theorem).

In addition to a helpful list of symbols and an index, a set of carefully chosen problems appears at the end of each chapter to reinforce mathematics covered. Students and teachers of undergraduate mathematics courses will find this volume a first-rate introduction to algebraic number theory.

The opening chapters offer sound explanations of the basics of elementary number theory and develop the fundamental properties of integers and congruences. Subsequent chapters present proofs of Fermat's and Wilson's theorems, introduce number theoretic functions, and explore the quadratic reciprocity theorem. Three independent sections follow, with examinations of the representation of numbers, diophantine equations, and primes. The text concludes with 260 additional problems, three helpful appendixes, and answers to selected exercises and problems.

Ono describes his rocky path through college and graduate school, interweaving Ramanujan’s story with his own and telling how at key moments, he was inspired by Ramanujan and guided by mentors who encouraged him to pursue his interest in exploring Ramanujan’s mathematical legacy.

Picking up where others left off, beginning with the great English mathematician G.H. Hardy, who brought Ramanujan to Cambridge in 1914, Ono has devoted his mathematical career to understanding how in his short life, Ramanujan was able to discover so many deep mathematical truths, which Ramanujan believed had been sent to him as visions from a Hindu goddess. And it was Ramanujan who was ultimately the source of reconciliation between Ono and his parents.

Ono’s search for Ramanujan ranges over three continents and crosses paths with mathematicians whose lives span the globe and the entire twentieth century and beyond. Along the way, Ken made many fascinating discoveries. The most important and surprising one of all was his own humanity."

The first four chapters present basic concepts and introductory principles in set theory, metric spaces, topological spaces, and linear spaces. The next two chapters consider linear functionals and linear operators, with detailed discussions of continuous linear functionals, the conjugate space, the weak topology and weak convergence, generalized functions, basic concepts of linear operators, inverse and adjoint operators, and completely continuous operators. The final four chapters cover measure, integration, differentiation, and more on integration. Special attention is here given to the Lebesque integral, Fubini's theorem, and the Stieltjes integral. Each individual section — there are 37 in all — is equipped with a problem set, making a total of some 350 problems, all carefully selected and matched.

With these problems and the clear exposition, this book is useful for self-study or for the classroom — it is basic one-year course in real analysis. Dr. Silverman is a former member of the Institute of Mathematical Sciences of New York University and the Lincoln Library of M.I.T. Along with his translation, he has revised the text with numerous pedagogical and mathematical improvements and restyled the language so that it is even more readable.

Numbers began as simple representations of everyday things, but mathematics rapidly took on a life of its own, occupying a parallel virtual world. In Are Numbers Real?, Brian Clegg explores the way that math has become more and more detached from reality, and yet despite this is driving the development of modern physics. From devising a new counting system based on goats, through the weird and wonderful mathematics of imaginary numbers and infinity, to the debate over whether mathematics has too much influence on the direction of science, this fascinating and accessible book opens the reader’s eyes to the hidden reality of the strange yet familiar entities that are numbers.

Each main topic is treated in depth from its historical conception through to its status today. Many beautiful solutions have emerged for basic chessboard problems since mathematicians first began working on them in earnest over three centuries ago, but such problems, including those involving polyominoes, have now been extended to three-dimensional chessboards and even chessboards on unusual surfaces such as toruses (the equivalent of playing chess on a doughnut) and cylinders. Using the highly visual language of graph theory, Watkins gently guides the reader to the forefront of current research in mathematics. By solving some of the many exercises sprinkled throughout, the reader can share fully in the excitement of discovery.

Showing that chess puzzles are the starting point for important mathematical ideas that have resonated for centuries, Across the Board will captivate students and instructors, mathematicians, chess enthusiasts, and puzzle devotees.

Symmetry is a fundamental phenomenon in art, science, and nature that has been captured, described, and analyzed using mathematical concepts for a long time. Inspired by the geometric intuition of Bill Thurston and empowered by his own analytical skills, John Conway, with his coauthors, has developed a comprehensive mathematical theory of symmetry that allows the description and classification of symmetries in numerous geometric environments.

This richly and compellingly illustrated book addresses the phenomenological, analytical, and mathematical aspects of symmetry on three levels that build on one another and will speak to interested lay people, artists, working mathematicians, and researchers.

Six Simple Twists: The Pleat Pattern Approach to Origami Tessellation Design explains the process of designing an origami pattern. It answers the questions "how is a tessellation folded" and "what are the further possibilities."

The author introduces an innovative pleat pattern technique of origami design that is easily accessible to anyone who enjoys the geometry of paper. The book begins with basic forms and systematically builds upon them to teach a limitless number of patterns. It then describes a process of design for the building blocks themselves. At the end, what emerges is a fascinating art form that will enrich folders for many years.

Unlike standard, project-based origami books, Six Simple Twists focuses on how to design rather than construct. This leads to a better understanding of more complicated tessellations at the advanced level.

Appropriate for anyone familiar with algebra at the high-school level, The Theory of Remainders offers a captivating introduction to both number theory and abstract algebra. Both elementary and challenging, it provides a view of mathematics as a conceptual net and illustrates the differences between conceptual and paraconceptual claims—an excellent start to expanding students' perspectives on mathematics.

Exercises throughout the book form an integral part of the text, extending students' experience with the concepts under discussion and presenting opportunities to observe patterns. In addition to the exercises, a series of optional problems allows more advanced readers to further develop the concepts.

Joyner uses permutation puzzles such as the Rubik’s Cube and its variants, the 15 puzzle, the Rainbow Masterball, Merlin’s Machine, the Pyraminx, and the Skewb to explain the basics of introductory algebra and group theory. Subjects covered include the Cayley graphs, symmetries, isomorphisms, wreath products, free groups, and finite fields of group theory, as well as algebraic matrices, combinatorics, and permutations.

Featuring strategies for solving the puzzles and computations illustrated using the SAGE open-source computer algebra system, the second edition of Adventures in Group Theory is perfect for mathematics enthusiasts and for use as a supplementary textbook.

Every number in this book is identified by its "field marks," "similar species," "personality," and "associations." For example, one field mark of the number 6 is that it is the first perfect number-- the sum of its divisors (1, 2, and 3) is equal to the number itself. Thus 28, the next perfect number, is a similar species. And the fact that 6 can easily be broken into 2 and 3 is part of its personality, a trait that is helpful when large numbers are being either multiplied or divided by 6. Associations with 6 include its relationship to the radius of a circle. In addition to such classifications, special attention is paid to dozens of other fascinating numbers, including zero, pi, 10 to the 76th power (the number of particles in the universe), transfinite and other exceptionally larger numbers, and the concept of infinity.

Ideal for beginners but organized to appeal to the mathematically literate, The Kingdom of Infinite Number will not only add to readers' enjoyment of mathematics, but to their problem-solving abilities as well.

Contents:

I. Introduction

II. The Euclidean Algorithm and Its Consequences

III. Congruences

IV. The Powers of an Integer Modulo m

V. Continued Fractions

VI. The Gaussian Integers

VII. Diophantine Equations

Requiring only a sound background in high-school mathematics, this work offers the student an excellent introduction to a branch of mathematics that has been a strong influence in the development of higher pure mathematics, both in stimulating the creation of powerful general methods in the course of solving special problems (such as Fermat conjecture and the prime number theorem) and as a source of ideas and inspiration comparable to geometry and the mathematics of physical phenomena.