## Similar

Today physicists and mathematicians throughout the world are feverishly working on one of the most ambitious theories ever proposed: superstring theory. String theory, as it is often called, is the key to the Unified Field Theory that eluded Einstein for more than thirty years. Finally, the century-old antagonism between the large and the small-General Relativity and Quantum Theory-is resolved. String theory proclaims that all of the wondrous happenings in the universe, from the frantic dancing of subatomic quarks to the majestic swirling of heavenly galaxies, are reflections of one grand physical principle and manifestations of one single entity: microscopically tiny vibrating loops of energy, a billionth of a billionth the size of an atom. In this brilliantly articulated and refreshingly clear book, Greene relates the scientific story and the human struggle behind twentieth-century physics' search for a theory of everything.

Through the masterful use of metaphor and analogy, The Elegant Universe makes some of the most sophisticated concepts ever contemplated viscerally accessible and thoroughly entertaining, bringing us closer than ever to understanding how the universe works.

In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we’ve never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space.

Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man’s journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century’s leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat’s last theorem, that had seemed intractable before.

At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.

Raised in Depression-era Rockaway Beach, physicist Richard Feynman was irreverent, eccentric, and childishly enthusiastic—a new kind of scientist in a field that was in its infancy. His quick mastery of quantum mechanics earned him a place at Los Alamos working on the Manhattan Project under J. Robert Oppenheimer, where the giddy young man held his own among the nation’s greatest minds. There, Feynman turned theory into practice, culminating in the Trinity test, on July 16, 1945, when the Atomic Age was born. He was only twenty-seven. And he was just getting started. In this sweeping biography, James Gleick captures the forceful personality of a great man, integrating Feynman’s work and life in a way that is accessible to laymen and fascinating for the scientists who follow in his footsteps.

Radiation: What could go wrong? In short, plenty. From Marie Curie carrying around a vial of radium salt because she liked the pretty blue glow to the large-scale disasters at Chernobyl and Fukushima, dating back to the late nineteenth century, nuclear science has had a rich history of innovative exploration and discovery, coupled with mistakes, accidents, and downright disasters.

In this lively book, long-time advocate of continued nuclear research and nuclear energy James Mahaffey looks at each incident in turn and analyzes what happened and why, often discovering where scientists went wrong when analyzing past meltdowns. Every incident, while taking its toll, has led to new understanding of the mighty atom—and the fascinating frontier of science that still holds both incredible risk and great promise.

"What time is it?" That simple question is probably asked more often in contemporary society than ever before. In our clock-studded world, the answer is never more than a glance away, and so we can blissfully partition our days into ever smaller increments for ever more tightly scheduled tasks. Modern scientific revelations about time, however, make the question endlessly frustrating. If we seek a precise knowledge of the time, the infinitesimal flash of now dissolves into a scattering flock of nanoseconds. Because we are bound by the speed of light and the velocity of nerve impulses, our perception of the "present" reflects the world as it occurred an instant ago – for all that human consciousness pretends otherwise, we can never catch up. Even in principle, perfect synchronicity escapes us. Relativity dictates that, like a strange syrup, time flows slower on moving trains than in the stations and faster in the mountains than in the valleys. The time for our wristwatch is not exactly the same as the time for our head. This eBook, A Question of Time, summarizes what science has discovered about how time permeates and guides both our physical world and our inner selves. That knowledge should enrich the imagination and provide practical advantages to anyone hoping to beat the clock, or at least to stay in step with it. Synchronize your watches...

The Theoretical Minimum is a book for anyone who has ever regretted not taking physics in college—or who simply wants to know how to think like a physicist. In this unconventional introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Unlike most popular physics books—which give readers a taste of what physicists know but shy away from equations or math—Susskind and Hrabovsky actually teach the skills you need to do physics, beginning with classical mechanics, yourself. Based on Susskind's enormously popular Stanford University-based (and YouTube-featured) continuing-education course, the authors cover the minimum—the theoretical minimum of the title—that readers need to master to study more advanced topics.

An alternative to the conventional go-to-college method, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

Particle physics as we know it depends on the Higgs boson: It’s the missing link between the birth of our universe—as a sea of tiny, massless particles—and the tangible world we live in today. But for more than 50 years, scientists wondered: Does it exist?

Physicist Jon Butterworth was at the frontlines of the hunt for the Higgs at CERN’s Large Hadron Collider—perhaps the most ambitious experiment in history. In Most Wanted Particle, he gives us the first inside account of that uncertain time, when an entire field hinged on a single particle, and life at the cutting edge of science meant media scrutiny, late-night pub debates, dispiriting false starts in the face of intense pressure, and countless hours at the collider itself. As Butterworth explains, our first glimpse of the elusive Higgs brings us a giant step closer to understanding the universe—and points the way to an entirely new kind of physics.

This authoritative, modern translation by I. Bernard Cohen and Anne Whitman, the first in more than 285 years, is based on the 1726 edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms.

Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the Principia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system.

The translation-only edition of this preeminent work is truly accessible for today's scientists, scholars, and students.

Now updated with 30% new material, Roark Formulas for Stress and Strain, Seventh Edition, is the ultimate resource for designers, engineers, and analysts who need to calculate loads and stress. This landmark reference from Warren Young and Richard Budynas provides you with equations and diagrams of structural properties in an easy-to-use, thumb-through format. Updated, with a user-friendly page layout, this new edition includes expanded coverage of joints, bearing and shear stress, experimental stress analysis, and stress concentrations, as well as material behavior coverage and stress and strain measurement. You’ll also find expanded tables and cases; improved notations and figures in the tables; consistent table and equation numbering; and verification of correction factors.

In Life’s Ratchet, physicist Peter M. Hoffmann locates the answer to this age-old question at the nanoscale. The complex molecules of our cells can rightfully be called “molecular machines,” or “nanobots”; these machines, unlike any other, work autonomously to create order out of chaos. Tiny electrical motors turn electrical voltage into motion, tiny factories custom-build other molecular machines, and mechanical machines twist, untwist, separate and package strands of DNA. The cell is like a city—an unfathomable, complex collection of molecular worker bees working together to create something greater than themselves.

Life, Hoffman argues, emerges from the random motions of atoms filtered through the sophisticated structures of our evolved machinery. We are essentially giant assemblies of interacting nanoscale machines; machines more amazing than can be found in any science fiction novel. Incredibly, the molecular machines in our cells function without a mysterious “life force,” nor do they violate any natural laws. Scientists can now prove that life is not supernatural, and that it can be fully understood in the context of science.

Part history, part cutting-edge science, part philosophy, Life’s Ratchet takes us from ancient Greece to the laboratories of modern nanotechnology to tell the story of our quest for the machinery of life.

“The amazing story of an unbelievable boy . . . The world that opens up to us through his story is both fascinating and slightly terrifying . . . but in a good way. You won’t be able to walk away from this tale.” — Elizabeth Gilbert, author of Eat, Pray, Love

“Imagine if cartoon whiz kid Jimmy Neutron were real and had a brainchild with MacGyver and his adolescence got told as a rollicking bildungsroman about American prodigies and DIY nuclear reactors—well, that’s this book.” —Jack Hitt, author of Bunch of Amateurs

By the age of nine, Taylor Wilson had mastered the science of rocket propulsion. At eleven, his grandmother’s cancer diagnosis inspired him to investigate new ways to produce medical isotopes. And by fourteen, Wilson had built a 500-million-degree reactor and become the youngest person in history to achieve nuclear fusion. How could someone so young achieve so much, and what can Wilson’s story teach parents and teachers about how to support high-achieving kids?

In The Boy Who Played with Fusion, science journalist Tom Clynes narrates Taylor’s extraordinary journey—from his Arkansas home, to a unique public high school just for academic superstars, to the present, when Wilson is designing devices to prevent terrorists from shipping radioactive material and inspiring a new generation to take on the challenges of science.

“Clynes guides us on an engrossing journey to the outer realms of science and parenting. The Boy Who Played with Fusion is a fascinating exploration of ‘giftedness’ and all its consequences.” —Paul Greenberg, author of Four Fish and American Catch

“An essential contribution to our understanding of the most important underlying questions about the development of giftedness, talent, creativity, and intelligence.” —Psychology Today

Physicist Dave Goldberg speeds across space, time and everything in between showing that our elegant universe—from the Higgs boson to antimatter to the most massive group of galaxies—is shaped by hidden symmetries that have driven all our recent discoveries about the universe and all the ones to come.

Why is the sky dark at night? If there is anti-matter, can there be anti-people? Why are past, present, and future our only options? Saluting the brilliant but unsung female mathematician Emmy Noether as well as other giants of physics, Goldberg answers these questions and more, exuberantly demonstrating that symmetry is the big idea—and the key to what lies ahead.

From the Trade Paperback edition.

This authoritative, modern translation by I. Bernard Cohen and Anne Whitman, the first in more than 285 years, is based on the 1726 edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms.

Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the Principia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system.

The illuminating Guide to Newton's Principia by I. Bernard Cohen makes this preeminent work truly accessible for today's scientists, scholars, and students.

In The Theory of Almost Everything, Robert Oerter shows how what were once thought to be separate forces of nature were combined into a single theory by some of the most brilliant minds of the twentieth century. Rich with accessible analogies and lucid prose, The Theory of Almost Everything celebrates a heretofore unsung achievement in human knowledge—and reveals the sublime structure that underlies the world as we know it.

You will follow your oxygen atoms through fire and water and from forests to your fingernails. Hydrogen atoms will wriggle into your hair and betray where you live and what you have been drinking. The carbon in your breath will become tree trunks, and the sodium in your tears will link you to long-dead oceans. The nitrogen in your muscles will help to turn the sky blue, the phosphorus in your bones will help to turn the coastal waters of North Carolina green, the calcium in your teeth will crush your food between atoms that were mined by mushrooms, and the iron in your blood will kill microbes as it once killed a star.

You will also discover that much of what death must inevitably do to your body is already happening among many of your atoms at this very moment and that, nonetheless, you and everyone else you know will always exist somewhere in the fabric of the universe.

You are not only made of atoms; you are atoms, and this book, in essence, is an atomic field guide to yourself.

“A modern voyage of discovery.” —Frank Wilczek, Nobel Laureate, author of The Lightness of Being

The Higgs boson is one of our era’s most fascinating scientific frontiers and the key to understanding why mass exists. The most recent book on the subject, The God Particle, was a bestseller. Now, Caltech physicist Sean Carroll documents the doorway that is opening—after billions of dollars and the efforts of thousands of researchers at the Large Hadron Collider in Switzerland—into the mind-boggling world of dark matter. The Particle at the End of the Universe has it all: money and politics, jealousy and self-sacrifice, history and cutting-edge physics—all grippingly told by a rising star of science writing.

"Such a richness of topics and amazing splendor of illustrations!" — Mathematics Magazine

"An inviting exposition for a literate but not highly scientific audience." — American Mathematical Monthly

This fascinating book explores the connections between chaos theory, physics, biology, and mathematics. Its award-winning computer graphics, optical illusions, and games illustrate the concept of self-similarity, a typical property of fractals. Author Manfred Schroeder — hailed by Publishers Weekly as a modern Lewis Carroll — conveys memorable insights in the form of puns and puzzles that relate abstract mathematics to everyday experience.

Excellent entertainment for readers with a grasp of algebra and some calculus, this book forms a fine university-level introduction to fractal math. Eight pages of color images clarify the text, along with numerous black-and-white illustrations.

In telling the story of what is perhaps the most anticipated experiment in the history of science, Amir D. Aczel takes us inside the control rooms at CERN at key moments when an international team of top researchers begins to discover whether this multibillion-euro investment will fulfill its spectacular promise. Through the eyes and words of the men and women who conceived and built CERN and the LHC—and with the same clarity and depth of knowledge he demonstrated in the bestselling Fermat’s Last Theorem—Aczel enriches all of us with a firm grounding in the scientific concepts we will need to appreciate the discoveries that will almost certainly spring forth when the full power of this great machine is finally unleashed.

Will the Higgs boson make its breathlessly awaited appearance, confirming at last the Standard Model of particles and their interactions that is among the great theoretical achievements of twentieth-century physics? Will the hidden dimensions posited by string theory be revealed? Will we at last identify the nature of the dark matter that makes up more than 90 percent of the cosmos? With Present at the Creation, written by one of today’s finest popular interpreters of basic science, we can all follow the progress of an experiment that promises to greatly satisfy the curiosity of anyone who ever concurred with Einstein when he said, “I want to know God’s thoughts—the rest is details.”

From the Hardcover edition.

Podcast — Building the H Bomb: A Personal History

Hosted by Milt Rosenberg (1590 WCGO), 25 June 2015

Building the H-Bomb: The Big Idea

APS News, June 2015 (Volume 24, Number 6)

Behind the Making of a Super Bomb

The Washington Post, 22 May 2015

Hydrogen Bomb Physicist's Book Runs Afoul of Energy Department

The New York Times, 23 March 2015

More

In this engaging scientific memoir, Kenneth Ford recounts the time when, in his mid-twenties, he was a member of the team that designed and built the first hydrogen bomb. He worked with — and relaxed with — scientific giants of that time such as Edward Teller, Enrico Fermi, Stan Ulam, John von Neumann, and John Wheeler, and here offers illuminating insights into the personalities, the strengths, and the quirks of these men. Well known for his ability to explain physics to nonspecialists, Ford also brings to life the physics of fission and fusion and provides a brief history of nuclear science from the discovery of radioactivity in 1896 to the ten-megaton explosion of “Mike” that obliterated a Pacific Island in 1952.

Ford worked at both Los Alamos and Princeton's Project Matterhorn, and brings out Matterhorn's major, but previously unheralded contribution to the development of the H bomb. Outside the lab, he drove a battered Chevrolet around New Mexico, a bantam motorcycle across the country, and a British roadster around New Jersey. Part of the charm of Ford's book is the way in which he leavens his well-researched descriptions of the scientific work with brief tales of his life away from weapons.

Contents:The Big IdeaThe ProtagonistsThe ChoiceThe Scientists, the Officials, and the PresidentNuclear EnergySome PhysicsGoing WestA New WorldThe Classical SuperCalculating and TestingConstructing MatterhornAcademia CowersNew Mexico, New York, and New JerseyThe Garwin DesignClimbing MatterhornMore Than a BoyReadership: A memoir for general readership in the history of science.

Key Features:It contains real physics, clearly presented for non-specialistsCombining historical scholarship and his own recollections, the author offers important insights into the people and the work that led to the first H bombPersonal anecdotes enliven the bookKeywords:Nuclear Weapons;Atomic Weapons;H Bomb;Thermonuclear Weapons;Nuclear Physics;Nuclear History;Thermonuclear History;Los Alamos;Edward Teller;Stanislav Ulam;John Wheeler;Project MatterhornReviews:

“It was a great treat to read a book that's well-written, informative, and gets the science right. It is these personal recollections and descriptions; the fact that it is a personal and first-hand account of a unique time in history and a remarkable scientific and technical achievement that made this book so enthralling. This is an engaging account of a young scientist involved in a remarkable project.”

P Andrew KaramThe Ohio State University

“Ford's book is a valuable resource for anyone interested in the history of the H bomb and its role in the Cold War, and in how that work affected the life and career of an individual involved.”

Physics Today"Personal memories are the book's greatest strength. Ford doesn't glorify, or apologize for, his work on the H-bomb. He simply tells it as it was. As a result, this is an engagingly human glimpse into the world of physics in the US in the early 1950s."

Physics World• It took more than an iceberg to sink the Titanic.

• The Challenger disaster was predicted.

• Unbreakable glass dinnerware had its origin in railroad lanterns.

• A football team cannot lose momentum.

• Mercury thermometers are prohibited on airplanes for a crucial reason.

• Kryptonite bicycle locks are easily broken.

“Things fall apart” is more than a poetic insight—it is a fundamental property of the physical world. Why Things Break explores the fascinating question of what holds things together (for a while), what breaks them apart, and why the answers have a direct bearing on our everyday lives.

When Mark Eberhart was growing up in the 1960s, he learned that splitting an atom leads to a terrible explosion—which prompted him to worry that when he cut into a stick of butter, he would inadvertently unleash a nuclear cataclysm. Years later, as a chemistry professor, he remembered this childhood fear when he began to ponder the fact that we know more about how to split an atom than we do about how a pane of glass breaks.

In Why Things Break, Eberhart leads us on a remarkable and entertaining exploration of all the cracks, clefts, fissures, and faults examined in the field of materials science and the many astonishing discoveries that have been made about everything from the explosion of the space shuttle Challenger to the crashing of your hard drive. Understanding why things break is crucial to modern life on every level, from personal safety to macroeconomics, but as Eberhart reveals here, it is also an area of cutting-edge science that is as provocative as it is illuminating.

From the Hardcover edition.

Drawing on physics and mechanical engineering, Steven Vogel looks at how animals swim and fly, modes of terrestrial locomotion, organism responses to winds and water currents, circulatory and suspension-feeding systems, and the relationship between size and mechanical design. He also investigates links between the properties of biological materials--such as spider silk, jellyfish jelly, and muscle--and their structural and functional roles. Early chapters and appendices introduce relevant physical variables for quantification, and problem sets are provided at the end of each chapter. Comparative Biomechanics is useful for physical scientists and engineers seeking a guide to state-of-the-art biomechanics. For a wider audience, the textbook establishes the basic biological context for applied areas--including ergonomics, orthopedics, mechanical prosthetics, kinesiology, sports medicine, and biomimetics--and provides materials for exhibit designers at science museums.

Problem sets at the ends of chapters Appendices cover basic background information Updated and expanded documentation and materials Revised figures and text Increased coverage of friction, viscoelastic materials, surface tension, diverse modes of locomotion, and biomimeticsIt starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived.

As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

A comprehensive and comprehensible introduction to the subject, this book is ideal for undergraduates in computer science, physicists, communications engineers, workers involved in artificial intelligence, biologists, psychologists, and physiologists.

Helps Students Better Understand Numerical Methods through Use of MATLAB®

The authors uniquely emphasize both theoretical numerical analysis and practical implementation of the algorithms in MATLAB, making the book useful for students in computational science and engineering. They provide students with simple, clear implementations instead of sophisticated usages of MATLAB functions.

All the Material Needed for a Numerical Analysis Course

Based on the authors’ own courses, the text only requires some knowledge of computer programming, advanced calculus, and difference equations. It includes practical examples, exercises, references, and problems, along with a solutions manual for qualifying instructors. Students can download MATLAB code from www.crcpress.com, enabling them to easily modify or improve the codes to solve their own problems.

- Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis.

This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.

Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on:

· Transition path sampling and diffusive barrier crossing to simulaterare events

· Dissipative particle dynamic as a course-grained simulation technique

· Novel schemes to compute the long-ranged forces

· Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations

· Multiple-time step algorithms as an alternative for constraints

· Defects in solids

· The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules

· Parallel tempering for glassy Hamiltonians

Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.

Helping you overcome these hurdles, Hydraulic Power System Analysis demonstrates modern computer-aided analytical techniques used to model nonlinear, dynamic fluid power systems. Following an overview of fluid power, the authors examine various relevant fluid properties, energy calculations, and steady state and dynamic analysis along with a review of automatic control theory. Turning to modeling, the next few chapters address valves and motors and then apply dynamic modeling to examples relating to pumps, hydrostatic transmissions, and valves. The book includes a unique chapter showing how to combine flow resistance equations with the differential equations governing dynamic system performance. The final chapter translates electrical circuit theory concepts to noise attenuation in fluid power systems.

Illustrated with many equations, practical computer modeling examples, and exercises, Hydraulic Power System Analysis provides a much-needed modernization of dynamic modeling for fluid power systems using powerful computational tools.

About the authors . . .

D. M. PIRRO is the Equipment Builder and OEM Manager, ExxonMobil Corporation, Fairfax, Virginia. The author or contributing editor of several scholarly articles on synthetic lubes, environmental awareness applications, grease technology, lubricant interchangeability, and oil analysis, Mr. Pirro is a Certified Lubrication Specialist and a member of the Society of Tribologists and Lubrication Engineers and the Association of Manufacturing Technology. He received the B.S. degree (1978) in mechanical engineering and the B.A. degree (1978) in business administration from Rutgers University, New Brunswick, New Jersey.

A. A. WESSOL is a part-time Lubrication Consultant for the ExxonMobil Corporation in Manassas, Virginia. Mr. Wessol retired from the Mobil Corporation after 24 years in various advanced technical positions. The author or coauthor of numerous professional papers on the environmental aspects of lubrication, plant engineering, hydraulics, and pneumatics, he received the B.S. degree (1972) in mathematics, physics, and chemistry from the University of Pittsburgh, Pennsylvania.