## Similar

This monograph extends this approach to the more general investigation of X-lattices G, where X-is a locally finite tree and G is a discrete group of automorphisms of X of finite covolume. These "tree lattices" are the main object of study. Special attention is given to both parallels and contrasts with the case of Lie groups. Beyond the Lie group connection, the theory has application to combinatorics and number theory.

The authors present a coherent survey of the results on uniform tree lattices, and a (previously unpublished) development of the theory of non-uniform tree lattices, including some fundamental and recently proved existence theorems. Non-uniform tree lattices are much more complicated than uniform ones; thus a good deal of attention is given to the construction and study of diverse examples. The fundamental technique is the encoding of tree action in terms of the corresponding quotient "graphs of groups."

Tree Lattices should be a helpful resource to researcher sin the field, and may also be used for a graduate course on geometric methods in group theory.

Subgroup growth studies the distribution of subgroups of finite index in a group as a function of the index. In the last two decades this topic has developed into one of the most active areas of research in infinite group theory; this book is a systematic and comprehensive account of the substantial theory which has emerged.

As well as determining the range of possible 'growth types', for finitely generated groups in general and for groups in particular classes such as linear groups, a main focus of the book is on the tight connection between the subgroup growth of a group and its algebraic structure.

A wide range of mathematical disciplines play a significant role in this work: as well as various aspects of infinite group theory, these include finite simple groups and permutation groups, profinite groups, arithmetic groups and Strong Approximation, algebraic and analytic number theory, probability, and p-adic model theory. Relevant aspects of such topics are explained in self-contained 'windows'.

The book develops the notion of commutative separable algebra over a given commutative ring and explains how to construct an equivalent category of profinite spaces on which a profinite groupoid acts. It explores how the connection between the categories depends on the construction of a suitable separable closure of the given ring, which in turn depends on certain notions in profinite topology. The book also discusses how to handle rings with infinitely many idempotents using profinite topological spaces and other methods.