## Similar

The book begins with a summary of the nontechnical aspects of interviewing, such as common mistakes, strategies for a great interview, perspectives from the other side of the table, tips on negotiating the best offer, and a guide to the best ways to use EPI.

The technical core of EPI is a sequence of chapters on basic and advanced data structures, searching, sorting, broad algorithmic principles, concurrency, and system design. Each chapter consists of a brief review, followed by a broad and thought-provoking series of problems. We include a summary of data structure, algorithm, and problem solving patterns.

Secrets of Mental Math will have you thinking like a math genius in no time. Get ready to amaze your friends—and yourself—with incredible calculations you never thought you could master, as renowned “mathemagician” Arthur Benjamin shares his techniques for lightning-quick calculations and amazing number tricks. This book will teach you to do math in your head faster than you ever thought possible, dramatically improve your memory for numbers, and—maybe for the first time—make mathematics fun.

Yes, even you can learn to do seemingly complex equations in your head; all you need to learn are a few tricks. You’ll be able to quickly multiply and divide triple digits, compute with fractions, and determine squares, cubes, and roots without blinking an eye. No matter what your age or current math ability, Secrets of Mental Math will allow you to perform fantastic feats of the mind effortlessly. This is the math they never taught you in school.

Also available as an eBook

The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts.

The companion web site, algs4.cs.princeton.edu, contains

An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related materialThe MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants.

Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.

The Art of Computer Programming, Volumes 1-4A Boxed Set, 3/e

ISBN: 0321751043

Art of Computer Programming, Volume 4, Fascicle 4,The: Generating All Trees--History of Combinatorial Generation: Generating All Trees--History of Combinatorial Generation

This multivolume work on the analysis of algorithms has long been recognized as the definitive description of classical computer science.The three complete volumes published to date already comprise a unique and invaluable resource in programming theory and practice. Countless readers have spoken about the profound personal influence of Knuth's writings. Scientists have marveled at the beauty and elegance of his analysis, while practicing programmers have successfully applied his “cookbook” solutions to their day-to-day problems. All have admired Knuth for the breadth, clarity, accuracy, and good humor found in his books.

To begin the fourth and later volumes of the set, and to update parts of the existing three, Knuth has created a series of small books called fascicles, which will be published at regular intervals. Each fascicle will encompass a section or more of wholly new or revised material. Ultimately, the content of these fascicles will be rolled up into the comprehensive, final versions of each volume, and the enormous undertaking that began in 1962 will be complete.

Volume 4, Fascicle 4

This latest fascicle covers the generation of all trees, a basic topic that has surprisingly rich ties to the first three volumes of The Art of Computer Programming. In thoroughly discussing this well-known subject, while providing 124 new exercises, Knuth continues to build a firm foundation for programming. To that same end, this fascicle also covers the history of combinatorial generation. Spanning many centuries, across many parts of the world, Knuth tells a fascinating story of interest and relevance to every artful programmer, much of it never before told. The story even includes a touch of suspense: two problems that no one has yet been able to solve.

Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research.

Develop a naïve Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a “whom to follow” recommendation system from Twitter dataWritten by two pioneers of the concept of math anxiety and how to overcome it, Arithmetic and Algebra Again has helped tens of thousands of people conquer their irrational fear of math.

This revised and expanded second edition of the perennial bestseller:

Features the latest techniques for breaking through common anxieties about numbers Takes a real-world approach that lets mathphobes learn the math they need as they need it Covers all key math areas--from whole numbers and fractions to basic algebra Features a section on practical math for banking, mortgages, interest, and statistics and probability Includes a new section on the graphing calculator, a chapter on the metric system, a section on word problems, and all updated exercisesBased on the successful approach of the Practice Makes Perfect series, a basic math workbook that allows students to reinforce their skills through key concepts and 500 exercises

About the Book

A no-nonsense practical guide to this subject, Practice Makes Perfect: Basic Math offers practice in very basic mathematics skills in an area also sometimes called remedial math. It covers the skills necessary to pass the GED and the math students need to know for community college. Students get reviews of arithmetic, multiplication, division, basic geometry and algebra, as well as negative numbers, square roots, working with fractions, and more.

Offering a winning formula for getting a handle on mathematics right away, Practice Makes Perfect: Basic Math is an indispensable resource for anyone who wants a solid understanding of the fundamentals.

Key Selling Features

Market/Audience

For students who need to review and practice basic math, whether to keep up with class work or to prepare for a test or exam

Author Information

Carolyn Wheater (Hawthorne, NJ) teaches middle school and upper school mathematics at the Nightingale-Bamford School in New York City. Educated at Marymount Manhattan College and the University of Massachusetts, Amherst, she has taught math and computer technology for 30 years to students from preschool through college. She is a member of National Council of Teachers of Mathematics (NCTM) and the Association of Teachers in Independent Schools.

The author can awaken for you a faculty which is surprisingly dormant in accountants, engineers, scientists, businesspeople, and others who work with figures. This is "number sense" — or the ability to recognize relations between numbers considered as whole quantities. Lack of this number sense makes it entirely possible for a scientist to be proficient in higher mathematics, but to bog down in the arithmetic of everyday life.

This book teaches the necessary mathematical techniques that schools neglect to teach: Horizontal addition, left to right multiplication and division, etc. You will learn a method of multiplication so rapid that you'll be able to do products in not much more time than it would take to write the problem down on paper.

This is not a collection of tricks that work in only a very few special cases, but a serious, capably planned course of basic mathematics for self-instruction. It contains over 9,000 short problems and their solutions for you to work during spare moments. Five or ten minutes spent daily on this book will, within ten weeks, give you a number sense that will double or triple your calculation speed.

Algorithms in C++, Third Edition, Part 5: Graph Algorithms is the second book in Sedgewick's thoroughly revised and rewritten series. The first book, Parts 1-4, addresses fundamental algorithms, data structures, sorting, and searching. A forthcoming third book will focus on strings, geometry, and a range of advanced algorithms. Each book's expanded coverage features new algorithms and implementations, enhanced descriptions and diagrams, and a wealth of new exercises for polishing skills. A focus on abstract data types makes the programs more broadly useful and relevant for the modern object-oriented programming environment.

Coverage includes:

A complete overview of graph properties and types Diagraphs and DAGs Minimum spanning trees Shortest paths Network flows Diagrams, sample C++ code, and detailed algorithm descriptionsThe Web site for this book (http://www.cs.princeton.edu/~rs/) provides additional source code for programmers along with a wide range of academic support materials for educators.

A landmark revision, Algorithms in C++, Third Edition, Part 5 provides a complete tool set for programmers to implement, debug, and use graph algorithms across a wide range of computer applications.

The Art of Computer Programming, Volumes 1-4A Boxed Set, 3/e

ISBN: 0321751043

Art of Computer Programming, Volume 1, Fascicle 1, The: MMIX -- A RISC Computer for the New Millennium

This multivolume work on the analysis of algorithms has long been recognized as the definitive description of classical computer science. The three complete volumes published to date already comprise a unique and invaluable resource in programming theory and practice. Countless readers have spoken about the profound personal influence of Knuth's writings. Scientists have marveled at the beauty and elegance of his analysis, while practicing programmers have successfully applied his "cookbook" solutions to their day-to-day problems. All have admired Knuth for the breadth, clarity, accuracy, and good humor found in his books.

To begin the fourth and later volumes of the set, and to update parts of the existing three, Knuth has created a series of small books called fascicles, which will be published t regular intervals. Each fascicle will encompass a section or more of wholly new or evised material. Ultimately, the content of these fascicles will be rolled up into the comprehensive, final versions of each volume, and the enormous undertaking that began in 1962 will be complete.

Volume 1, Fascicle 1

This first fascicle updates The Art of Computer Programming, Volume 1, Third Edition: Fundamental Algorithms, and ultimately will become part of the fourth edition of that book. Specifically, it provides a programmer's introduction to the long-awaited MMIX, a RISC-based computer that replaces the original MIX, and describes the MMIX assembly language. The fascicle also presents new material on subroutines, coroutines, and interpretive routines.

Ebook (PDF version) produced by Mathematical Sciences Publishers (MSP),http://msp.org

We are living in the computer age, in a world increasingly designed and engineered by computer programmers and software designers, by people who call themselves hackers. Who are these people, what motivates them, and why should you care?

Consider these facts: Everything around us is turning into computers. Your typewriter is gone, replaced by a computer. Your phone has turned into a computer. So has your camera. Soon your TV will. Your car was not only designed on computers, but has more processing power in it than a room-sized mainframe did in 1970. Letters, encyclopedias, newspapers, and even your local store are being replaced by the Internet.

Hackers & Painters: Big Ideas from the Computer Age, by Paul Graham, explains this world and the motivations of the people who occupy it. In clear, thoughtful prose that draws on illuminating historical examples, Graham takes readers on an unflinching exploration into what he calls "an intellectual Wild West."

The ideas discussed in this book will have a powerful and lasting impact on how we think, how we work, how we develop technology, and how we live. Topics include the importance of beauty in software design, how to make wealth, heresy and free speech, the programming language renaissance, the open-source movement, digital design, internet startups, and more.

It used to be that to diagnose an illness, interpret legal documents, analyze foreign policy, or write a newspaper article you needed a human being with specific skills—and maybe an advanced degree or two. These days, high-level tasks are increasingly being handled by algorithms that can do precise work not only with speed but also with nuance. These “bots” started with human programming and logic, but now their reach extends beyond what their creators ever expected.

In this fascinating, frightening book, Christopher Steiner tells the story of how algorithms took over—and shows why the “bot revolution” is about to spill into every aspect of our lives, often silently, without our knowledge.

The May 2010 “Flash Crash” exposed Wall Street’s reliance on trading bots to the tune of a 998-point market drop and $1 trillion in vanished market value. But that was just the beginning. In Automate This, we meet bots that are driving cars, penning haiku, and writing music mistaken for Bach’s. They listen in on our customer service calls and figure out what Iran would do in the event of a nuclear standoff. There are algorithms that can pick out the most cohesive crew of astronauts for a space mission or identify the next Jeremy Lin. Some can even ingest statistics from baseball games and spit out pitch-perfect sports journalism indistinguishable from that produced by humans.

The interaction of man and machine can make our lives easier. But what will the world look like when algorithms control our hospitals, our roads, our culture, and our national security? What happens to businesses when we automate judgment and eliminate human instinct? And what role will be left for doctors, lawyers, writers, truck drivers, and many others?

Who knows—maybe there’s a bot learning to do your job this minute.Understanding multiplying and dividing is essential for your child to do math problems with confidence. Practice Makes Perfect: Multiplication and Division gives your child bite-sized explanations of the subjects, with engaging exercises that keep her or him motivated and excited to learn. They can practice the problems they find challenging, polish skills they’ve mastered, and stretch themselves to explore skills they have not yet attempted. This book features exercises that increase in difficulty as your child proceeds through it.

This book is appropriate for a 4th grade student working above his or her grade level, or as a great review and practice for a struggling 5th or 6th grader.

The book serves two very different audiences: the curious science reader and the technical computational reader. The chapters build in mathematical sophistication, so that the first five are accessible to the general academic reader. While other chapters are much more mathematical in nature, each one contains something for both audiences. For example, the authors include entertaining asides such as how search engines make money and how the Great Firewall of China influences research.

The book includes an extensive background chapter designed to help readers learn more about the mathematics of search engines, and it contains several MATLAB codes and links to sample web data sets. The philosophy throughout is to encourage readers to experiment with the ideas and algorithms in the text.

Any business seriously interested in improving its rankings in the major search engines can benefit from the clear examples, sample code, and list of resources provided.

Many illustrative examples and entertaining asides MATLAB code Accessible and informal style Complete and self-contained section for mathematics review

Using a practical, hands-on approach, this book will take you through all the facets of developing Access-based solutions, such as data modeling, complex form development, and user interface customizations. You'll then deploy your solution to the web and integrate it with other external data sources. This book is full of handy tricks to help you get the most out of what Access has to offer, including its comprehensive set of features and tools for collecting, using, and acting on business data, whether your data is in Access or stored on another platform. You'll also see how to smoothly integrate your applications with SQL Server databases and other Office programs, such as Outlook.

Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive it off the lot? Can you really afford an XBox 360 and a new iPhone? Learn how to put algebra to work for you, and nail your class exams along the way.

Your time is way too valuable to waste struggling with new concepts. Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Algebra uses a visually rich format specifically designed to take advantage of the way your brain really works.

About the Book

Each book in this series helps primary-school students learn and practice basic math skills they'll need in the classroom and on standardized NCLB tests. Printed in 4-color throughout; with numerous special high-interest features.

Key Selling Features

Attractive 4-color page design creates a student-friendly learning experience. All pages are filled to the brim with activities for maximum educational value. High-interest features and real-world applications enliven the learning experience and hold student interest Week-by-week summer study plans support use as a "summer bridge" learning and reinforcement program. All content aligned to state and national standards Instructional content is scaffolded; students are shown examples, then prompted through the process of solving problems independently. Complete review of Grade 1 math aligned to the new "common core" state standards Week-by-week study plans support use as "summer bridge" program for children entering Grade 1 Drill and practice to reinforce learningMarket / Audience

The market for these books consists of parents who are anxious because their children have to take NCLB tests or because their children are falling behind in school. Other parents will buy the books simply because their children need or want additional practice to reinforce school-taught skills.

Sales for this type of workbook always peak in late spring when parents look for "summer bridge" study aids. A week-by-week summer study plan included in the book supports this use.

Beginning ASP.NET 4.5 Databases is a comprehensive introduction on how you can connect a Web site to many different data sources — not just databases — and use the data to create dynamic page content. It also shows you how to build a relational database, use SQL to communicate with it, and understand how they differ from each other.

With in-depth, on-target coverage of the new data access features of .NET Framework 4.5, this book is your guide to using ASP.NET to build responsive, easy-to-update data-driven Web sites.

Many new algorithms are presented, and the explanations of each algorithm are much more detailed than in previous editions. A new text design and detailed, innovative figures, with accompanying commentary, greatly enhance the presentation. The third edition retains the successful blend of theory and practice that has made Sedgewick's work an invaluable resource for more than 250,000 programmers!

This particular book, Parts 1n4, represents the essential first half of Sedgewick's complete work. It provides extensive coverage of fundamental data structures and algorithms for sorting, searching, and related applications. Although the substance of the book applies to programming in any language, the implementations by Van Wyk and Sedgewick also exploit the natural match between C++ classes and ADT implementations.

Highlights Expanded coverage of arrays, linked lists, strings, trees, and other basic data structures Greater emphasis on abstract data types (ADTs), modular programming, object-oriented programming, and C++ classes than in previous editions Over 100 algorithms for sorting, selection, priority queue ADT implementations, and symbol table ADT (searching) implementations New implementations of binomial queues, multiway radix sorting, randomized BSTs, splay trees, skip lists, multiway tries, B trees, extendible hashing, and much more Increased quantitative information about the algorithms, giving you a basis for comparing them Over 1000 new exercises to help you learn the properties of algorithmsWhether you are learning the algorithms for the first time or wish to have up-to-date reference material that incorporates new programming styles with classic and new algorithms, you will find a wealth of useful information in this book.

Windows Server 2008 Active Directory, Configuring

Exam 70-640

Don Poulton

Covers the critical information you’ll need to know to score higher on Exam 70-640!

Utilize new features of Windows Server 2008 related to Active Directory

Install and configure Active Directory forests and domains

Plan and implement an Organizational Unit structure

Plan and manage Active Directory infrastructure components, such as operations masters, global catalogs, read-only domain controllers, and sites

Plan, implement, and manage Active Directory using Group Policy

Plan and manage Active Directory roles, including Active Directory Lightweight Directory Services, Active Directory Rights Management Services, and Active Directory Federation Services

Deploy software in Active Directory using Group Policy

Utilize Active Directory features to manage users and groups

Back up and restore Active Directory, and rebuild an Active Directory domain controller from backup

Deploy and manage a public key infrastructure using Active Directory Certificate Services

WRITTEN BY A LEADING EXPERT:

Don Poulton, MCSA, MCSE, A+, Network+, Security+, has been involved in consulting with small training providers as a technical writer, during which time he wrote training and exam prep materials for Windows NT 4.0, Windows 2000, and Windows XP. More recently, he has written or co-authored several certification volumes on Security+, Windows XP, Windows Server 2003, and Windows Vista, published by Que Publishing.

Extensive additions in this edition include

A new chapter on cyclic redundancy checking (CRC), including routines for the commonly used CRC-32 code A new chapter on error correcting codes (ECC), including routines for the Hamming code More coverage of integer division by constants, including methods using only shifts and adds Computing remainders without computing a quotient More coverage of population count and counting leading zeros Array population count New algorithms for compress and expand An LRU algorithm Floating-point to/from integer conversions Approximate floating-point reciprocal square root routine A gallery of graphs of discrete functions Now with exercises and answers

Good math skills are indispensable for all engineers regardless of their specialty, yet only a relatively small portion of the math that engineering students study in college mathematics courses is used on a frequent basis in the study or practice of engineering. That's why Essential Math Skills for Engineers focuses on only these few critically essential math skills that students need in order to advance in their engineering studies and excel in engineering practice.

Essential Math Skills for Engineers features concise, easy-to-follow explanations that quickly bring readers up to speed on all the essential core math skills used in the daily study and practice of engineering. These fundamental and essential skills are logically grouped into categories that make them easy to learn while also promoting their long-term retention. Among the key areas covered are:

Algebra, geometry, trigonometry, complex arithmetic, and differential and integral calculus

Simultaneous, linear, algebraic equations

Linear, constant-coefficient, ordinary differential equations

Linear, constant-coefficient, difference equations

Linear, constant-coefficient, partial differential equations

Fourier series and Fourier transform

Laplace transform

Mathematics of vectors

With the thorough understanding of essential math skills gained from this text, readers will have mastered a key component of the knowledge needed to become successful students of engineering. In addition, this text is highly recommended for practicing engineers who want to refresh their math skills in order to tackle problems in engineering with confidence.

Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference.

At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to:

Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learningBy learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.

This book is for Java developers with basic Java programming knowledge. No previous knowledge of neural networks is required as this book covers the concepts from scratch.

What You Will LearnGet to grips with the basics of neural networks and what they are used forDevelop neural networks using hands-on examplesExplore and code the most widely-used learning algorithms to make your neural network learn from most types of dataDiscover the power of neural network's unsupervised learning process to extract the intrinsic knowledge hidden behind the dataApply the code generated in practical examples, including weather forecasting and pattern recognitionUnderstand how to make the best choice of learning parameters to ensure you have a more effective applicationSelect and split data sets into training, test, and validation, and explore validation strategiesDiscover how to improve and optimize your neural networkIn DetailVast quantities of data are produced every second. In this context, neural networks become a powerful technique to extract useful knowledge from large amounts of raw, seemingly unrelated data. One of the most preferred languages for neural network programming is Java as it is easier to write code using it, and most of the most popular neural network packages around already exist for Java. This makes it a versatile programming language for neural networks.

This book gives you a complete walkthrough of the process of developing basic to advanced practical examples based on neural networks with Java.

You will first learn the basics of neural networks and their process of learning. We then focus on what Perceptrons are and their features. Next, you will implement self-organizing maps using the concepts you've learned. Furthermore, you will learn about some of the applications that are presented in this book such as weather forecasting, disease diagnosis, customer profiling, and characters recognition (OCR). Finally, you will learn methods to optimize and adapt neural networks in real time.

All the examples generated in the book are provided in the form of illustrative source code, which merges object-oriented programming (OOP) concepts and neural network features to enhance your learning experience.

Style and approachThis book adopts a step-by-step approach to neural network development and provides many hands-on examples using Java programming. Each neural network concept is explored through real-world problems and is delivered in an easy-to-comprehend manner.

Awake Mathemagician Inside You !

- Can you multiply 44465 by 8888 in single line ?

- Can you figure out day on 24/5/2014 in 10 seconds ?

- Can you divide 123456 by 44444 instantaneously ?

- Can you raise number to any integral power ?

- Can you determine divisibility of 124356 by 37 just in 5 seconds ?

- Can you find square root, cube root or any root of any number without using calculator ?

- Can you convert (2134)6 = ( ? )12 in 20 seconds ?

SILENT FEATURES OF BOOK

Introduce VJ's universal divisibility test for all number !

Reveal unique secret behind speed mathematics !

Explain concept behind each method !

Unifies Vedic math, Trachtenberg system and modern math .

Presents faster method for n'th root of any number !

Give quicker methods for converting number from one base to other!

Introduce one-line method to compute root of any number or polynomial equation (VJ's matrix method)

Introduce novel pattern called golden pattern

Golden Lemma and Golden pattern

- Simplify everything right from polynomial multiplication, division , power , root , inverse etc.

- Help to build generic module in high level language to carry out basic operation on polynomial

- Parallel multiplication architecture for multiprocessor environment

- Golden pattern(process) is applicable in many area of algebra.

- Golden pattern is superior over vertically crosswise pattern mentioned in Vedic math.

INTRODUCTION

Now–a -days speed math system ( like Vedic Mathematics , Trachtenberg System) are gaining widespread popularity among students as well as teachers. Speed math refers to faster methods and techniques to solve arithmetic calculation mentally. It saves considerable amount of time in competitive exam. So it is worthy to study speed math.

In order to compute given calculation mentally, one need to recall right kind of specific method (shortcut) out of 1000's. Instead of doing so,

i) Is it possible to compute any arithmetic operation (like addition, multiplication) quickly by using scientific approach ?

ii) Is it possible to derive all methods in speed math by using unique principle ?

iii) Is there any unique secret (principle) behind speed mathematics ?

After researching speed math about 2-3 years, I realized that there is unique secret (principle) behind speed mathematics !! This book explains entire speed mathematics by using single principle and gives introduction to new number system called as global number system. It extends VM framework in some of the area like divisibility, n'th root.

Related Videos / Presentations

1) https://www.youtube.com/watch?v=b3PFjsUgULM

2) http://www.slideshare.net/jadhavvitthal1989/presentations

*****************************************************

MODERN APPROACH TO SPEED MATH SECRET - PAPERBACK EDITION

Due to frequent demand from reader for paperback edition of 'Modern Approach to Speed Math Secret' , it would be provided as print on demand service.

TO ORDER PAPERBACK EDITION REFER

http://teckguide.net/?page_id=38

For Joining course on aptitude / Visual math / Vedic math by author refer

http://piclearner.com/

************************************************

Note to Reader :

Reader can post suggestion , constructive criticism or any question related to any math topic at https://www.facebook.com/vjsmathemagic OR

https://www.facebook.com/groups/887201061336628/

Group on mathematics for solving reader's doubt, spreading new insight in mathematics by different experts, bringing different researcher together, boosting number sense / logical thinking in student.

******************************************************

" Essence of mathematics lies in its freedom" - Georg Cantor

" Pure mathematics is, in its way, the poetry of logical ideas." - Albert Einstein

" As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality. " - Albert Einstein

“ In my opinion, all things in nature occur mathematically.”

― René Descartes

" Mathematical Knowledge adds vigour to the mind, free it from prejudices & superstition " - John Arbuthnot

Some mathematician, I believe, has said that true pleasure lies not in the discovery of truth, but in the search for it." -Tolstoy

"Mathematics is the queen of science, and arithmetic the queen of mathematics."

- Carl Friedrich Gauss

"Truth is ever to be found in the simplicity, and not in the multiplicity and confusion of things." - Isaac Newton

"Quantification is ultimate goal of mathematics.." - V. B. Jadhav

"Truth is ultimate goal of supreme knowledge.." - V.B. Jadhav

If you’re a reasonably proficient programmer who can think logically, you have all the background you’ll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem.

As you read this book, you’ll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You’ll also gain deep insight into the value of mathematics to programming—insight that will prove invaluable no matter what programming languages and paradigms you use.

You will learn about

How to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiency Ancient paradoxes, beautiful theorems, and the productive tension between continuous and discrete A simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on it Powerful mathematical approaches to abstraction How abstract algebra provides the idea at the heart of generic programming Axioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structures Surprising subtleties of simple programming tasks and what you can learn from them How practical implementations can exploit theoretical knowledge

The quickest route to learning a subject is through a solid grounding in the basics. So what you won’t find in Easy Mathematics Step-by-Step is a lot of endless drills. Instead, you get a clear explanation that breaks down complex concepts into easy-to-understand steps, followed by highly focused exercises that are linked to core skills--enabling learners to grasp when and how to apply those techniques.

This book features: Large step-by-step charts breaking down each step within a process and showing clear connections between topics and annotations to clarify difficulties Stay-in-step panels show how to cope with variations to the core steps Step-it-up exercises link practice to the core steps already presented Missteps and stumbles highlight common errors to avoidYou can master math as long as you take it Step-by-Step!

Julian Havil explores Napier’s original development of logarithms, the motivations for his approach, and the reasons behind certain adjustments to them. Napier’s inventive mathematical ideas also include formulas for solving spherical triangles, "Napier’s Bones" (a more basic but extremely popular alternative device for calculation), and the use of decimal notation for fractions and binary arithmetic. Havil also considers Napier’s study of the Book of Revelation, which led to his prediction of the Apocalypse in his first book, A Plaine Discovery of the Whole Revelation of St. John—the work for which Napier believed he would be most remembered.

John Napier assesses one man’s life and the lasting influence of his advancements on the mathematical sciences and beyond.

Write powerful C programs…without becoming a technical expert! This book is the fastest way to get comfortable with C, one incredibly clear and easy step at a time. You’ll learn all the basics: how to organize programs, store and display data, work with variables, operators, I/O, pointers, arrays, functions, and much more. C programming has neverbeen this simple!

This C Programming book gives a good start and complete introduction for C Programming for Beginner’s. Learn the all basics and advanced features of C programming in no time from Bestselling Programming Author Harry. H. Chaudhary. This Book, starts with the basics; I promise this book will make you 100% expert level champion of C Programming.

This book contains 1000+ Live C Program’s code examples, and 500+ Lab Exercise & 200+ Brain Wash Topic-wise Code book and 20+ Live software Development Project’s. All what you need ! Isn’t it ?

Write powerful C programs…without becoming a technical expert! This book is the fastest way to get comfortable with C, one incredibly clear and easy step at a time. You’ll learn all the basics: how to organize programs, store and display data, work with variables, operators, I/O, pointers, arrays, functions, and much more. (See Below List)C programming has never been this simple!

Who knew how simple C programming could be?

This is today’s best beginner’s guide to writing C programs–and to learning skills you can use with practically any language. Its simple, practical instructions will help you start creating useful, reliable C code. This book covers common core syllabus for BCA, MCA, B.TECH, BS (CS), MS (CS), BSC-IT (CS), MSC-IT (CS), and Computer Science Professionals as well as for Hackers.

This Book is very serious C Programming stuff: A complete introduction to C Language. You'll learn everything from the fundamentals to advanced topics. If you've read this book, you know what to expect a visually rich format designed for the way your brain works. If you haven't, you're in for a treat. You'll see why people say it's unlike any other C book you've ever read.

Learning a new language is no easy. You might think the problem is your brain. It seems to have a mind of its own, a mind that doesn't always want to take in the dry, technical stuff you're forced to study. The fact is your brain craves novelty. It's constantly searching, scanning, waiting for something unusual to happen. After all, that's the way it was built to help you stay alive. It takes all the routine, ordinary, dull stuff and filters it to the background so it won't interfere with your brain's real work--recording things that matter. How does your brain know what matters?

(A) 1000+ Live C Program’s code examples,

(B) 500+ Lab Exercises,

(C) 200+ Brain Wash Topic-wise Code

(D) 20+ Live software Development Project’s.

(E) Learn Complete C- without fear,

.

|| Inside Chapters. ||

1. Preface – Page-6, || Introduction to C.

2. Elements of C Programming Language.

3. Control statements (conditions).

4. Control statements (Looping).

5. One dimensional Array.

6. Multi-Dimensional Array.

7. String (Character Array).

8. Your Brain on Functions.

9. Your Brain on Pointers.

10. Structure, Union, Enum, Bit Fields, Typedef.

11. Console Input and Output.

12. File Handling In C.

13. Miscellaneous Topics.

14. Storage Class.

15. Algorithms.

16. Unsolved Practical Problems.

17. PART-II-120+ Practical Code Chapter-Wise.

18. Creating & Inserting own functions in Liberary.

19. Graphics Programming In C.

20. Operating System Development –Intro.

21. C Programming Guidelines.

22. Common C Programming Errors.

23. Live Software Development Using C.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings, tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

Upgraded figures and code An all-new chapter introducing analytic combinatorics Simplified derivations via analytic combinatorics throughoutThe book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s The Art of Computer Programming books—and provide the background they need to keep abreast of new research.

"[Sedgewick and Flajolet] are not only worldwide leaders of the field, they also are masters of exposition. I am sure that every serious computer scientist will find this book rewarding in many ways."

—From the Foreword by Donald E. Knuth

In an inspiring introduction, science writer Edward Stoddard offers important suggestions for mastering an entirely new system of figuring. Without having to discard acquired information about mathematical computation, students build on the knowledge they already have, "streamline" these techniques for rapid use and then combine them with classic shortcuts.

Initially, readers learn to master a basic technique known as the Japanese "automatic" figuring method — the principle behind the abacus. This method enables users to multiply without carrying, divide with half the written work of long division, and mentally solve mathematical problems that usually require pencil and paper or a calculator. Additional chapters explain how to build speed in addition and subtraction, how to check for accuracy, master fractions, work quickly with decimals, handle percentages, and much more.

A valuable asset for people in business who work with numbers on a variety of levels, this outstanding book will also appeal to students, teachers, and anyone looking for a reliable way to improve skill and speed in doing basic arithmetic.

This book shows how using Java can significantly improve MATLAB program appearance and functionality, and that this can be done easily and even without any prior Java knowledge.

Readers are led step-by-step from simple to complex customizations. Code snippets, screenshots, and numerous online references are provided to enable the utilization of this book as both a sequential tutorial and as a random-access reference suited for immediate use. Java-savvy readers will find it easy to tailor code samples for their particular needs; for Java newcomers, an introduction to Java and numerous online references are provided.

This book demonstrates how

The MATLAB programming environment relies on Java for numerous tasks, including networking, data-processing algorithms and graphical user-interface (GUI) We can use MATLAB for easy access to external Java functionality, either third-party or user-created Using Java, we can extensively customize the MATLAB environment and application GUI, enabling the creation of visually appealing and usable applications

Starting with the fundamental concepts of F# and functional programming, this book will walk you through basic problems, helping you to write functional and maintainable code. Using easy-to-understand examples, you will learn how to design data structures and algorithms in F# and apply these concepts in real-life projects. The book will cover built-in data structures and take you through enumerations and sequences. You will gain knowledge about stacks, graph-related algorithms, and implementations of binary trees. Next, you will understand the custom functional implementation of a queue, review sets and maps, and explore the implementation of a vector. Finally, you will find resources and references that will give you a comprehensive overview of F# ecosystem, helping you to go beyond the fundamentals.

Algorithms in C, Third Edition, Part 5: Graph Algorithms is the second book in Sedgewick's thoroughly revised and rewritten series. The first book, Parts 1-4, addresses fundamental algorithms, data structures, sorting, and searching. A forthcoming third book will focus on strings, geometry, and a range of advanced algorithms. Each book's expanded coverage features new algorithms and implementations, enhanced descriptions and diagrams, and a wealth of new exercises for polishing skills. A focus on abstract data types makes the programs more broadly useful and relevant for the modern object-oriented programming environment.

Coverage includes:

A complete overview of graph properties and types Diagraphs and DAGs Minimum spanning trees Shortest paths Network flows Diagrams, sample C code, and detailed algorithm descriptionsThe Web site for this book (http://www.cs.princeton.edu/~rs/) provides additional source code for programmers along with numerous support materials for educators.

A landmark revision, Algorithms in C, Third Edition, Part 5 provides a complete tool set for programmers to implement, debug, and use graph algorithms across a wide range of computer applications.

Supplying a solid understanding of the key principles of distributed computing and their relationship to real-world applications, Distributed Systems: An Algorithmic Approach, Second Edition makes both an ideal textbook and a handy professional reference.

After a historical overview and an introduction to software technology and models, the book discusses the software change and its phases, including concept location, impact analysis, refactoring, actualization, and verification. It then covers the most common iterative processes: agile, directed, and centralized processes. The text also journeys through the software life span from the initial development of software from scratch to the final stages that lead toward software closedown.

For Professionals

The book gives programmers and software managers a unified view of the contemporary practice of software engineering. It shows how various developments fit together and fit into the contemporary software engineering mosaic. The knowledge gained from the book allows practitioners to evaluate and improve the software engineering processes in their projects.

For Instructors

Instructors have several options for using this classroom-tested material. Designed to be run in conjunction with the lectures, ideas for student projects include open source programs that use Java or C++ and range in size from 50 to 500 thousand lines of code. These projects emphasize the role of developers in a classroom-tailored version of the directed iterative process (DIP).

For Students

Students gain a real understanding of software engineering processes through the lectures and projects. They acquire hands-on experience with software of the size and quality comparable to that of industrial software. As is the case in the industry, students work in teams but have individual assignments and accountability.

To help realize Big Data’s full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues.

Covers computational platforms supporting Big Data applicationsAddresses key principles underlying Big Data computingExamines key developments supporting next generation Big Data platformsExplores the challenges in Big Data computing and ways to overcome themContains expert contributors from both academia and industryIt covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples.

Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors.

The book covers key foundation topics:

o Taylor series methods

o Runge--Kutta methods

o Linear multistep methods

o Convergence

o Stability

and a range of modern themes:

o Adaptive stepsize selection

o Long term dynamics

o Modified equations

o Geometric integration

o Stochastic differential equations

The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

interviewee in Indian IT Industry, specifically investment banks & product

companies

Topics Covered In This Book include - Java Concepts, Core Java 8, Algorithms & Data Structures, Concurrency Problems, Design Problems, Hibernate, Spring and REST

Solving Word Problems is one of the biggest hurdle that kids face in Algebra. A bit of imagination is required to understand and solve these type of problems along with the calculations.

This book breaks simple word problems using graphics thus helping the kids to visualize and understand the word problems. It develops the imaginative thinking required to solve these problems from an early level. This will help the kids to solve difficult problems as they will learn to imagine, analyze and break the problem into small parts which gives a better understanding on how to solve these type of problems.Featuring an interdisciplinary, balanced approach, the handbook focuses on both generalized dynamic knowledge and specific models. It first introduces the general concepts, representations, and philosophy of dynamic models, followed by a section on modeling methodologies that explains how to portray designed models on a computer. After addressing scale, heterogeneity, and composition issues, the book covers specific model types that are often characterized by specific visual- or text-based grammars. It concludes with case studies that employ two well-known commercial packages to construct, simulate, and analyze dynamic models.

A complete guide to the fundamentals, types, and applications of dynamic models, this handbook shows how systems function and are represented over time and space and illustrates how to select a particular model based on a specific area of interest.

Organized around interdisciplinary problem domains, rather than programming language features, each chapter guides students through increasingly sophisticated algorithmic and programming techniques. The author uses a spiral approach to introduce Python language features in increasingly complex contexts as the book progresses.

The text places programming in the context of fundamental computer science principles, such as abstraction, efficiency, and algorithmic techniques, and offers overviews of fundamental topics that are traditionally put off until later courses.

The book includes thirty well-developed independent projects that encourage students to explore questions across disciplinary boundaries. Each is motivated by a problem that students can investigate by developing algorithms and implementing them as Python programs.

The book's accompanying website — http://discoverCS.denison.edu — includes sample code and data files, pointers for further exploration, errata, and links to Python language references.

Containing over 600 homework exercises and over 300 integrated reflection questions, this textbook is appropriate for a first computer science course for computer science majors, an introductory scientific computing course or, at a slower pace, any introductory computer science course.

This hands-on textbook/reference presents a comprehensive review of key distributed graph algorithms for computer network applications, with a particular emphasis on practical implementation. Each chapter opens with a concise introduction to a specific problem, supporting the theory with numerous examples, before providing a list of relevant algorithms. These algorithms are described in detail from conceptual basis to pseudocode, complete with graph templates for the stepwise implementation of the algorithm, followed by its analysis. The chapters then conclude with summarizing notes and programming exercises.

Topics and features: introduces a range of fundamental graph algorithms, covering spanning trees, graph traversal algorithms, routing algorithms, and self-stabilization; reviews graph-theoretical distributed approximation algorithms with applications in ad hoc wireless networks; describes in detail the implementation of each algorithm, with extensive use of supporting examples, and discusses their concrete network applications; examines key graph-theoretical algorithm concepts, such as dominating sets, and parameters for mobility and energy levels of nodes in wireless ad hoc networks, and provides a contemporary survey of each topic; presents a simple simulator, developed to run distributed algorithms; provides practical exercises at the end of each chapter.

This classroom-tested and easy-to-follow textbook is essential reading for all graduate students and researchers interested in discrete mathematics, algorithms and computer networks.