## Similar

The text is divided into three parts:

- Part I: A brief introduction to (Schwartz) distribution theory. Elements from the theories of ultra distributions and (Fourier) hyperfunctions are given in addition to some deeper results for Schwartz distributions, thus providing a rather comprehensive introduction to the theory of generalized functions. Basic properties and methods for distributions are developed with applications to constant coefficient ODEs and PDEs. The relation between distributions and holomorphic functions is considered, as well as basic properties of Sobolev spaces.

- Part II: Fundamental facts about Hilbert spaces. The basic theory of linear (bounded and unbounded) operators in Hilbert spaces and special classes of linear operators - compact, Hilbert-Schmidt, trace class, and Schrödinger operators, as needed in quantum physics and quantum information theory – are explored. This section also contains a detailed spectral analysis of all major classes of linear operators, including completeness of generalized eigenfunctions, as well as of (completely) positive mappings, in particular quantum operations.

- Part III: Direct methods of the calculus of variations and their applications to boundary- and eigenvalue-problems for linear and nonlinear partial differential operators. The authors conclude with a discussion of the Hohenberg-Kohn variational principle.

The appendices contain proofs of more general and deeper results, including completions, basic facts about metrizable Hausdorff locally convex topological vector spaces, Baire’s fundamental results and their main consequences, and bilinear functionals.

Mathematical Methods in Physics is aimed at a broad community of graduate students in mathematics, mathematical physics, quantum information theory, physics and engineering, as well as researchers in these disciplines. Expanded content and relevant updates will make this new edition a valuable resource for those working in these disciplines.

• Time and physics

• Time, philosophy and psychology

• Time, mathematics and information theory

It is a unique contribution by philosophers and scientists who are active in mathematics, physics, biology, engineering, information theory and psychology. Questions such as the existence of a Big Bang, the neurobiological basis regarding the coexistence of free will and determinism, intercultural aspects of time, mathematical models of time, psychopathological features of time, and micro reversibility versus macroscopic irreversibility are studied. It also provides a truly interdisciplinary study of the problematic 'arrow of time'.

During the last thirty years the use of nonstandard models in mathematics has taken its rightful place among the various methods employed by mathematicians. The contributions in this volume have been selected to present a panoramic view of the various directions in which nonstandard analysis is advancing, thus serving as a source of inspiration for future research.

Papers have been grouped in sections dealing with analysis, topology and topological groups; probability theory; and mathematical physics.

This volume can be used as a complementary text to courses in nonstandard analysis, and will be of interest to graduate students and researchers in both pure and applied mathematics and physics.

The present monograph provides a thorough treatment of the symmetric as well as the non-symmetric case, surveys the theory of hyperfinite Lévy processes, and summarizes in an epilogue the model-theoretic genericity of hyperfinite stochastic processes theory.

This volume will be useful to graduate students and research mathematicians wishing to get acquainted with recent developments in the field of stochastic analysis.

The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan.

Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.

The fundamental question of whether, or in what sense, science informs us about the real world has pervaded the history of thought since antiquity. Is what science tells us about the world determined unambiguously by facts, or does the content of any scientific theory in some way depend on the human condition? "Sokal’s hoax" attacked the mere seriousness of post-modern views of science and shifted this controversial debate to a new level, which very quickly came to be known as "Science Wars".

"Knowledge and the World" examines and reviews the broad range of philosophical positions on this issue, extending from realism to relativism, to expound the epistemic merit of t science, and to tackle the central question: in what sense can science justifiably claim to provide a truthful portrait of reality? Challenges beyond the Science Wars are taken up by contributions of scientists, sociologists and philosophers of science, which connect perspectives of a wide variety of disciplines (including biology and cultural studies). This book addresses everyone interested in the philosophy and history of science, and in particular in the interplay between the social and natural sciences.

This volume promotes the dialogue between approaches to sequence analysis that developed separately, within traditions contrasted in space and disciplines. It includes the latest developments in sequential concepts, coding, atypical datasets and time patterns, optimal matching and alternative algorithms, survey optimization, and visualization.

Field studies include original sequential material related to parenting in 19th-century Belgium, higher education and work in Finland and Italy, family formation before and after German reunification, French Jews persecuted in occupied France, long-term trends in electoral participation, and regime democratization.

Overall the book reassesses the classical uses of sequences and it promotes new ways of collecting, formatting, representing and processing them. The introduction provides basic sequential concepts and tools, as well as a history of the method. Chapters are presented in a way that is both accessible to the beginner and informative to the expert.

In addition, whenever possible these essays take the opportunity to link foundational issues to the many exciting developments that are often linked to major experimental and technological breakthroughs in exploiting the electromagnetic field and in particular, its quantum properties and its interactions with matter, as well as to advances in solid state physics (such as new quantum Hall liquids, topological insulators and graphene). The present volume also focuses on various areas, including new interference experiments with very large molecules passing through double-slits, which test the validity of the Kochen-Specker theorem; new tests of the violation of Bell’s inequalities and the consequences of entanglement; new non-demolition measurements and tests of “wave-function collapse” to name but a few.

These experimental developments have raised many challenging questions for theorists, leading to a new surge of interest in the foundations of QM, which have puzzled physicists ever since this theory was pioneered almost ninety years ago.

The outcome of a seminar program of the same name on foundational issues in quantum physics (QM), organized by the editors of this book and addressing newcomers to the field and more seasoned specialists alike, this volume provides a pedagogically inspired snapshot view of many of the unresolved issues in the field of foundational QM.

The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. To take care of the many developments since then, an entire new chapter on the current forefront of research has been added. Except for this new chapter and the correction of a few misprints, the basic material and presentation of the first edition has been maintained. At the end of each chapter the reader will also find notes with further bibliographical information.

-The New York Times Book Review

Nate Silver built an innovative system for predicting baseball performance, predicted the 2008 election within a hair’s breadth, and became a national sensation as a blogger—all by the time he was thirty. He solidified his standing as the nation's foremost political forecaster with his near perfect prediction of the 2012 election. Silver is the founder and editor in chief of the website FiveThirtyEight.

Drawing on his own groundbreaking work, Silver examines the world of prediction, investigating how we can distinguish a true signal from a universe of noisy data. Most predictions fail, often at great cost to society, because most of us have a poor understanding of probability and uncertainty. Both experts and laypeople mistake more confident predictions for more accurate ones. But overconfidence is often the reason for failure. If our appreciation of uncertainty improves, our predictions can get better too. This is the “prediction paradox”: The more humility we have about our ability to make predictions, the more successful we can be in planning for the future.

In keeping with his own aim to seek truth from data, Silver visits the most successful forecasters in a range of areas, from hurricanes to baseball, from the poker table to the stock market, from Capitol Hill to the NBA. He explains and evaluates how these forecasters think and what bonds they share. What lies behind their success? Are they good—or just lucky? What patterns have they unraveled? And are their forecasts really right? He explores unanticipated commonalities and exposes unexpected juxtapositions. And sometimes, it is not so much how good a prediction is in an absolute sense that matters but how good it is relative to the competition. In other cases, prediction is still a very rudimentary—and dangerous—science.

Silver observes that the most accurate forecasters tend to have a superior command of probability, and they tend to be both humble and hardworking. They distinguish the predictable from the unpredictable, and they notice a thousand little details that lead them closer to the truth. Because of their appreciation of probability, they can distinguish the signal from the noise.

With everything from the health of the global economy to our ability to fight terrorism dependent on the quality of our predictions, Nate Silver’s insights are an essential read.

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.

Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

The Lean Product Playbook is a practical guide to building products that customers love. Whether you work at a startup or a large, established company, we all know that building great products is hard. Most new products fail. This book helps improve your chances of building successful products through clear, step-by-step guidance and advice.

The Lean Startup movement has contributed new and valuable ideas about product development and has generated lots of excitement. However, many companies have yet to successfully adopt Lean thinking. Despite their enthusiasm and familiarity with the high-level concepts, many teams run into challenges trying to adopt Lean because they feel like they lack specific guidance on what exactly they should be doing.

If you are interested in Lean Startup principles and want to apply them to develop winning products, this book is for you. This book describes the Lean Product Process: a repeatable, easy-to-follow methodology for iterating your way to product-market fit. It walks you through how to:

Determine your target customers Identify underserved customer needs Create a winning product strategy Decide on your Minimum Viable Product (MVP) Design your MVP prototype Test your MVP with customers Iterate rapidly to achieve product-market fitThis book was written by entrepreneur and Lean product expert Dan Olsen whose experience spans product management, UX design, coding, analytics, and marketing across a variety of products. As a hands-on consultant, he refined and applied the advice in this book as he helped many companies improve their product process and build great products. His clients include Facebook, Box, Hightail, Epocrates, and Medallia.

Entrepreneurs, executives, product managers, designers, developers, marketers, analysts and anyone who is passionate about building great products will find The Lean Product Playbook an indispensable, hands-on resource.

One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text.

The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students.

This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes.

New to this Edition:

65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chainsContains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new examsUpdated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bankIncludes SPSS PASW Modeler and SAS JMP software packages which are widely used in the fieldHallmark features:

Superior writing styleExcellent exercises and examples covering the wide breadth of coverage of probability topics Real-world applications in engineering, science, business and economicsThe author begins with basic characteristics of financial time series data before covering three main topics:

Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methodsKey features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets.

The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.

1,001 Statistics Practice Problems For Dummies takes you beyond the instruction and guidance offered in Statistics For Dummies to give you a more hands-on understanding of statistics. The practice problems offered range in difficulty, including detailed explanations and walk-throughs.

In this series, every step of every solution is shown with explanations and detailed narratives to help you solve each problem. With the book purchase, you’ll also get access to practice statistics problems online. This content features 1,001 practice problems presented in multiple choice format; on-the-go access from smart phones, computers, and tablets; customizable practice sets for self-directed study; practice problems categorized as easy, medium, or hard; and a one-year subscription with book purchase.

Offers on-the-go access to practice statistics problems Gives you friendly, hands-on instruction 1,001 statistics practice problems that range in difficulty1,001 Statistics Practice Problems For Dummies provides ample practice opportunities for students who may have taken statistics in high school and want to review the most important concepts as they gear up for a faster-paced college class.

". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis."

—Journal of the American Statistical Association

Features newly developed topics and applications of the analysis of longitudinal data

Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of longitudinal data that can be applied across various fields of study, from the health and medical sciences to the social and behavioral sciences.

The authors incorporate their extensive academic and research experience along with various updates that have been made in response to reader feedback. The Second Edition features six newly added chapters that explore topics currently evolving in the field, including:

Fixed effects and mixed effects models Marginal models and generalized estimating equations Approximate methods for generalized linear mixed effects models Multiple imputation and inverse probability weighted methods Smoothing methods for longitudinal data Sample size and powerEach chapter presents methods in the setting of applications to data sets drawn from the health sciences. New problem sets have been added to many chapters, and a related website features sample programs and computer output using SAS, Stata, and R, as well as data sets and supplemental slides to facilitate a complete understanding of the material.

With its strong emphasis on multidisciplinary applications and the interpretation of results, Applied Longitudinal Analysis, Second Edition is an excellent book for courses on statistics in the health and medical sciences at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and professionals in the medical, public health, and pharmaceutical fields as well as those in social and behavioral sciences who would like to learn more about analyzing longitudinal data.

These may not sound like typical questions for an economist to ask. But Steven D. Levitt is not a typical economist. He is a much-heralded scholar who studies the riddles of everyday life—from cheating and crime to sports and child-rearing—and whose conclusions turn conventional wisdom on its head.

Freakonomics is a groundbreaking collaboration between Levitt and Stephen J. Dubner, an award-winning author and journalist. They usually begin with a mountain of data and a simple question. Some of these questions concern life-and-death issues; others have an admittedly freakish quality. Thus the new field of study contained in this book: Freakonomics.

Through forceful storytelling and wry insight, Levitt and Dubner show that economics is, at root, the study of incentives—how people get what they want, or need, especially when other people want or need the same thing. In Freakonomics, they explore the hidden side of . . . well, everything. The inner workings of a crack gang. The truth about real-estate agents. The myths of campaign finance. The telltale marks of a cheating schoolteacher. The secrets of the Ku Klux Klan.

What unites all these stories is a belief that the modern world, despite a great deal of complexity and downright deceit, is not impenetrable, is not unknowable, and—if the right questions are asked—is even more intriguing than we think. All it takes is a new way of looking.

Freakonomics establishes this unconventional premise: If morality represents how we would like the world to work, then economics represents how it actually does work. It is true that readers of this book will be armed with enough riddles and stories to last a thousand cocktail parties. But Freakonomics can provide more than that. It will literally redefine the way we view the modern world.

Bonus material added to the revised and expanded 2006 edition

The original New York Times Magazine article about Steven D. Levitt by Stephen J. Dubner, which led to the creation of this book.Seven “Freakonomics” columns written for the New York Times Magazine, published between August 2005 and April 2006.Selected entries from the Freakonomics blog, posted between April 2005 and May 2006 at http://www.freakonomics.com/blog/.Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation.

Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to:

Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audienceTogether, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!

For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions.

And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.

This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables.

Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-the-art techniques for building, interpreting, and assessing the performance of LR models. New and updated features include:

A chapter on the analysis of correlated outcome data A wealth of additional material for topics ranging from Bayesian methods to assessing model fit Rich data sets from real-world studies that demonstrate each method under discussion Detailed examples and interpretation of the presented results as well as exercises throughoutApplied Logistic Regression, Third Edition is a must-have guide for professionals and researchers who need to model nominal or ordinal scaled outcome variables in public health, medicine, and the social sciences as well as a wide range of other fields and disciplines.

“This book should be an essential part of the personal library of every practicing statistician.”—Technometrics

Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation.

Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features:

The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research.

This edition:

Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user.

Praise for the first edition:

‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008)

‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)"It is, as far as I'm concerned, among the best books in math ever written....if you are a mathematician and want to have the top reference in probability, this is it." (Amazon.com, January 2006)

A complete and comprehensive classic in probability and measure theory

Probability and Measure, Anniversary Edition by Patrick Billingsley celebrates the achievements and advancements that have made this book a classic in its field for the past 35 years. Now re-issued in a new style and format, but with the reliable content that the third edition was revered for, this Anniversary Edition builds on its strong foundation of measure theory and probability with Billingsley's unique writing style. In recognition of 35 years of publication, impacting tens of thousands of readers, this Anniversary Edition has been completely redesigned in a new, open and user-friendly way in order to appeal to university-level students.

This book adds a new foreward by Steve Lally of the Statistics Department at The University of Chicago in order to underscore the many years of successful publication and world-wide popularity and emphasize the educational value of this book. The Anniversary Edition contains features including:

An improved treatment of Brownian motion Replacement of queuing theory with ergodic theory Theory and applications used to illustrate real-life situations Over 300 problems with corresponding, intensive notes and solutions Updated bibliography An extensive supplement of additional notes on the problems and chapter commentariesPatrick Billingsley was a first-class, world-renowned authority in probability and measure theory at a leading U.S. institution of higher education. He continued to be an influential probability theorist until his unfortunate death in 2011. Billingsley earned his Bachelor's Degree in Engineering from the U.S. Naval Academy where he served as an officer. he went on to receive his Master's Degree and doctorate in Mathematics from Princeton University.Among his many professional awards was the Mathematical Association of America's Lester R. Ford Award for mathematical exposition. His achievements through his long and esteemed career have solidified Patrick Billingsley's place as a leading authority in the field and been a large reason for his books being regarded as classics.

This Anniversary Edition of Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Like the previous editions, this Anniversary Edition is a key resource for students of mathematics, statistics, economics, and a wide variety of disciplines that require a solid understanding of probability theory.

Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference.

At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to:

Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learningBy learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.

"Seamless R and C++ integration with Rcpp" is simply a wonderful book. For anyone who uses C/C++ and R, it is an indispensable resource. The writing is outstanding. A huge bonus is the section on applications. This section covers the matrix packages Armadillo and Eigen and the GNU Scientific Library as well as RInside which enables you to use R inside C++. These applications are what most of us need to know to really do scientific programming with R and C++. I love this book. -- Robert McCulloch, University of Chicago Booth School of Business

Rcpp is now considered an essential package for anybody doing serious computational research using R. Dirk's book is an excellent companion and takes the reader from a gentle introduction to more advanced applications via numerous examples and efficiency enhancing gems. The book is packed with all you might have ever wanted to know about Rcpp, its cousins (RcppArmadillo, RcppEigen .etc.), modules, package development and sugar. Overall, this book is a must-have on your shelf. -- Sanjog Misra, UCLA Anderson School of Management

The Rcpp package represents a major leap forward for scientific computations with R. With very few lines of C++ code, one has R's data structures readily at hand for further computations in C++. Hence, high-level numerical programming can be made in C++ almost as easily as in R, but often with a substantial speed gain. Dirk is a crucial person in these developments, and his book takes the reader from the first fragile steps on to using the full Rcpp machinery. A very recommended book! -- Søren Højsgaard, Department of Mathematical Sciences, Aalborg University, Denmark

"Seamless R and C ++ Integration with Rcpp" provides the first comprehensive introduction to Rcpp. Rcpp has become the most widely-used language extension for R, and is deployed by over one-hundred different CRAN and BioConductor packages. Rcpp permits users to pass scalars, vectors, matrices, list or entire R objects back and forth between R and C++ with ease. This brings the depth of the R analysis framework together with the power, speed, and efficiency of C++.

Dirk Eddelbuettel has been a contributor to CRAN for over a decade and maintains around twenty packages. He is the Debian/Ubuntu maintainer for R and other quantitative software, edits the CRAN Task Views for Finance and High-Performance Computing, is a co-founder of the annual R/Finance conference, and an editor of the Journal of Statistical Software. He holds a Ph.D. in Mathematical Economics from EHESS (Paris), and works in Chicago as a Senior Quantitative Analyst.

The Qlik platform was designed to provide a fast and easy data analytics tool, and QlikView Your Business is your detailed, full-color, step-by-step guide to understanding Qlikview's powerful features and techniques so you can quickly start unlocking your data’s potential. This expert author team brings real-world insight together with practical business analytics, so you can approach, explore, and solve business intelligence problems using the robust Qlik toolset and clearly communicate your results to stakeholders using powerful visualization features in QlikView and Qlik Sense.

This book starts at the basic level and dives deep into the most advanced QlikView techniques, delivering tangible value and knowledge to new users and experienced developers alike. As an added benefit, every topic presented is enhanced with tips, tricks, and insightful recommendations that the authors accumulated through years of developing QlikView analytics.

This is the book for you:

The book covers three common business scenarios - Sales, Profitability, and Inventory Analysis. Each scenario contains four chapters, covering the four main disciplines of business analytics: Business Case, Data Modeling, Scripting, and Visualizations.

The material is organized by increasing levels of complexity. Following our comprehensive tutorial, you will learn simple and advanced QlikView and Qlik Sense concepts, including the following:

Data Modeling:

How to use the Data Load Script language for implementing data modeling techniques How to build and use the QVD data layer Building a multi-tier data architectures Using variables, loops, subroutines, and other script control statements Advanced scripting techniques for a variety of ETL solutions Building Insightful Visualizations in QlikView:

Introduction into QlikView sheet objects — List Boxes, Text Objects, Charts, and more Designing insightful Dashboards in QlikView Using advanced calculation techniques, such as Set Analysis and Advanced Aggregation Using variables for What-If Analysis, as well as using variables for storing calculations, colors, and selection filters Advanced visualization techniques - normalized and non-normalized Mekko charts, Waterfall charts, Whale Tail charts, and more

Building Insightful Visualizations in Qlik Sense:

Whether you are just starting out with QlikView or are ready to dive deeper, QlikView Your Business is your comprehensive guide to sharpening your QlikView skills and unleashing the power of QlikView in your organization.

Across various industries, compensation professionals work to organize and analyze aspects of employment that deal with elements of pay, such as deciding base salary, bonus, and commission provided by an employer to its employees for work performed. Acknowledging the numerous quantitative analyses of data that are a part of this everyday work, Statistics for Compensation provides a comprehensive guide to the key statistical tools and techniques needed to perform those analyses and to help organizations make fully informed compensation decisions.

This self-contained book is the first of its kind to explore the use of various quantitative methods—from basic notions about percents to multiple linear regression—that are used in the management, design, and implementation of powerful compensation strategies. Drawing upon his extensive experience as a consultant, practitioner, and teacher of both statistics and compensation, the author focuses on the usefulness of the techniques and their immediate application to everyday compensation work, thoroughly explaining major areas such as:

Frequency distributions and histograms

Measures of location and variability

Model building

Linear models

Exponential curve models

Maturity curve models

Power models

Market models and salary survey analysis

Linear and exponential integrated market models

Job pricing market models

Throughout the book, rigorous definitions and step-by-step procedures clearly explain and demonstrate how to apply the presented statistical techniques. Each chapter concludes with a set of exercises, and various case studies showcase the topic's real-world relevance. The book also features an extensive glossary of key statistical terms and an appendix with technical details. Data for the examples and practice problems are available in the book and on a related FTP site.

Statistics for Compensation is an excellent reference for compensation professionals, human resources professionals, and other practitioners responsible for any aspect of base pay, incentive pay, sales compensation, and executive compensation in their organizations. It can also serve as a supplement for compensation courses at the upper-undergraduate and graduate levels.

"This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."

—Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression.

The book now includes a new chapter on the detection and correction of multicollinearity, while also showcasing the use of the discussed methods on newly added data sets from the fields of engineering, medicine, and business. The Fifth Edition also explores additional topics, including:

Surrogate ridge regression Fitting nonlinear models Errors in variables ANOVA for designed experimentsMethods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions, the required assumptions, and the evaluated success of each technique. Additionally, methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R.

Regression Analysis by Example, Fifth Edition is suitable for anyone with an understanding of elementary statistics.

This book is aimed at business analysts with basic programming skills for using R for Business Analytics. Note the scope of the book is neither statistical theory nor graduate level research for statistics, but rather it is for business analytics practitioners. Business analytics (BA) refers to the field of exploration and investigation of data generated by businesses. Business Intelligence (BI) is the seamless dissemination of information through the organization, which primarily involves business metrics both past and current for the use of decision support in businesses. Data Mining (DM) is the process of discovering new patterns from large data using algorithms and statistical methods. To differentiate between the three, BI is mostly current reports, BA is models to predict and strategize and DM matches patterns in big data. The R statistical software is the fastest growing analytics platform in the world, and is established in both academia and corporations for robustness, reliability and accuracy.

The book utilizes Albert Einstein’s famous remarks on making things as simple as possible, but no simpler. This book will blow the last remaining doubts in your mind about using R in your business environment. Even non-technical users will enjoy the easy-to-use examples. The interviews with creators and corporate users of R make the book very readable. The author firmly believes Isaac Asimov was a better writer in spreading science than any textbook or journal author.

Wouldn't it be wonderful if studying statistics were easier? With U Can: Statistics I For Dummies, it is! This one-stop resource combines lessons, practical examples, study questions, and online practice problems to provide you with the ultimate guide to help you score higher in your statistics course. Foundational statistics skills are a must for students of many disciplines, and leveraging study materials such as this one to supplement your statistics course can be a life-saver. Because U Can: Statistics I For Dummies contains both the lessons you need to learn and the practice problems you need to put the concepts into action, you'll breeze through your scheduled study time.

Statistics is all about collecting and interpreting data, and is applicable in a wide range of subject areas—which translates into its popularity among students studying in diverse programs. So, if you feel a bit unsure in class, rest assured that there is an easy way to help you grasp the nuances of statistics!

Understand statistical ideas, techniques, formulas, and calculations Interpret and critique graphs and charts, determine probability, and work with confidence intervals Critique and analyze data from polls and experiments Combine learning and applying your new knowledge with practical examples, practice problems, and expanded online resourcesU Can: Statistics I For Dummies contains everything you need to score higher in your fundamental statistics course!

The ever-growing use of derivative products makes it essential for financial industry practitioners to have a solid understanding of derivative pricing. To cope with the growing complexity, narrowing margins, and shortening life-cycle of the individual derivative product, an efficient, yet modular, implementation of the pricing algorithms is necessary. Mathematical Finance is the first book to harmonize the theory, modeling, and implementation of today's most prevalent pricing models under one convenient cover. Building a bridge from academia to practice, this self-contained text applies theoretical concepts to real-world examples and introduces state-of-the-art, object-oriented programming techniques that equip the reader with the conceptual and illustrative tools needed to understand and develop successful derivative pricing models.

Utilizing almost twenty years of academic and industry experience, the author discusses the mathematical concepts that are the foundation of commonly used derivative pricing models, and insightful Motivation and Interpretation sections for each concept are presented to further illustrate the relationship between theory and practice. In-depth coverage of the common characteristics found amongst successful pricing models are provided in addition to key techniques and tips for the construction of these models. The opportunity to interactively explore the book's principal ideas and methodologies is made possible via a related Web site that features interactive Java experiments and exercises.

While a high standard of mathematical precision is retained, Mathematical Finance emphasizes practical motivations, interpretations, and results and is an excellent textbook for students in mathematical finance, computational finance, and derivative pricing courses at the upper undergraduate or beginning graduate level. It also serves as a valuable reference for professionals in the banking, insurance, and asset management industries.

This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.

"The book follows faithfully the style of the original edition. The approach is heavily motivated by real-world time series, and by developing a complete approach to model building, estimation, forecasting and control."

—Mathematical Reviews

Bridging classical models and modern topics, the Fifth Edition of Time Series Analysis: Forecasting and Control maintains a balanced presentation of the tools for modeling and analyzing time series. Also describing the latest developments that have occurred in the field over the past decade through applications from areas such as business, finance, and engineering, the Fifth Edition continues to serve as one of the most influential and prominent works on the subject.

Time Series Analysis: Forecasting and Control, Fifth Edition provides a clearly written exploration of the key methods for building, classifying, testing, and analyzing stochastic models for time series and describes their use in five important areas of application: forecasting; determining the transfer function of a system; modeling the effects of intervention events; developing multivariate dynamic models; and designing simple control schemes. Along with these classical uses, the new edition covers modern topics with new features that include:

A redesigned chapter on multivariate time series analysis with an expanded treatment of Vector Autoregressive, or VAR models, along with a discussion of the analytical tools needed for modeling vector time series An expanded chapter on special topics covering unit root testing, time-varying volatility models such as ARCH and GARCH, nonlinear time series models, and long memory models Numerous examples drawn from finance, economics, engineering, and other related fields The use of the publicly available R software for graphical illustrations and numerical calculations along with scripts that demonstrate the use of R for model building and forecasting Updates to literature references throughout and new end-of-chapter exercises Streamlined chapter introductions and revisions that update and enhance the expositionTime Series Analysis: Forecasting and Control, Fifth Edition is a valuable real-world reference for researchers and practitioners in time series analysis, econometrics, finance, and related fields. The book is also an excellent textbook for beginning graduate-level courses in advanced statistics, mathematics, economics, finance, engineering, and physics.

Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding.

The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features:

An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.

Addressing the highly competitive and risky environments of current-day financial and sports gambling markets, Forecasting in Financial and Sports Gambling Markets details the dynamic process of constructing effective forecasting rules based on both graphical patterns and adaptive drift modeling (ADM) of cointegrated time series. The book uniquely identifies periods of inefficiency that these markets oscillate through and develops profitable forecasting models that capitalize on irrational behavior exhibited during these periods.

Providing valuable insights based on the author's firsthand experience, this book utilizes simple, yet unique, candlestick charts to identify optimal time periods in financial markets and optimal games in sports gambling markets for which forecasting models are likely to provide profitable trading and wagering outcomes. Featuring detailed examples that utilize actual data, the book addresses various topics that promote financial and mathematical literacy, including:

Higher order ARMA processes in financial markets

The effects of gambling shocks in sports gambling markets

Cointegrated time series with model drift

Modeling volatility

Throughout the book, interesting real-world applications are presented, and numerous graphical procedures illustrate favorable trading and betting opportunities, which are accompanied by mathematical developments in adaptive model forecasting and risk assessment. A related web site features updated reviews in sports and financial forecasting and various links on the topic.

Forecasting in Financial and Sports Gambling Markets is an excellent book for courses on financial economics and time series analysis at the upper-undergraduate and graduate levels. The book is also a valuable reference for researchers and practitioners working in the areas of retail markets, quant funds, hedge funds, and time series. Also, anyone with a general interest in learning about how to profit from the financial and sports gambling markets will find this book to be a valuable resource.

Key Features:

Provides a clear introduction and a comprehensive account of multilevel models. New methodological developments and applications are explored. Written by a leading expert in the field of multilevel methodology. Illustrated throughout with real-life examples, explaining theoretical concepts.This book is suitable as a comprehensive text for postgraduate courses, as well as a general reference guide. Applied statisticians in the social sciences, economics, biological and medical disciplines will find this book beneficial.

This volume includes information on the underlying mechanisms of microbial emergence, the technology used to detect them, and the strategies available to contain them. The author describes the diseases and their causative agents that are major factors in the health of populations the world over.

The book contains up-to-date selections from infectious disease journals as well as information from the Centers for Disease Control and Prevention, the World Health Organization, MedLine Plus, and the American Society for Microbiology.

Perfect for students or those new to the field, the book contains Summary Overviews (thumbnail sketches of the basic information about the microbe and the associated disease under examination), Review Questions (testing students' knowledge of the material), and Topics for Further Discussion (encouraging a wider conversation on the implications of the disease and challenging students to think creatively to develop new solutions).

This important volume provides broad coverage of a variety of emerging infectious diseases, of which most are directly important to health practitioners in the United States.