## Similar

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials ForDummies. Now students who are prepping for exams, preparing tostudy new material, or who just need a refresher can have aconcise, easy-to-understand review guide that covers an entirecourse by concentrating solely on the most important concepts. Fromalgebra and chemistry to grammar and Spanish, our expert authorsfocus on the skills students most need to succeed in a subject.

What if you had to take an art class in which you were only taught how to paint a fence? What if you were never shown the paintings of van Gogh and Picasso, weren't even told they existed? Alas, this is how math is taught, and so for most of us it becomes the intellectual equivalent of watching paint dry.

In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we've never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space.

Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man's journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century's leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat's last theorem, that had seemed intractable before.

At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.

New York Times Bestseller

“Not so different in spirit from the way public intellectuals like John Kenneth Galbraith once shaped discussions of economic policy and public figures like Walter Cronkite helped sway opinion on the Vietnam War…could turn out to be one of the more momentous books of the decade.”

—New York Times Book Review

"Nate Silver's The Signal and the Noise is The Soul of a New Machine for the 21st century."

—Rachel Maddow, author of Drift

"A serious treatise about the craft of prediction—without academic mathematics—cheerily aimed at lay readers. Silver's coverage is polymathic, ranging from poker and earthquakes to climate change and terrorism."

—New York Review of Books

Nate Silver built an innovative system for predicting baseball performance, predicted the 2008 election within a hair’s breadth, and became a national sensation as a blogger—all by the time he was thirty. He solidified his standing as the nation's foremost political forecaster with his near perfect prediction of the 2012 election. Silver is the founder and editor in chief of the website FiveThirtyEight.

Drawing on his own groundbreaking work, Silver examines the world of prediction, investigating how we can distinguish a true signal from a universe of noisy data. Most predictions fail, often at great cost to society, because most of us have a poor understanding of probability and uncertainty. Both experts and laypeople mistake more confident predictions for more accurate ones. But overconfidence is often the reason for failure. If our appreciation of uncertainty improves, our predictions can get better too. This is the “prediction paradox”: The more humility we have about our ability to make predictions, the more successful we can be in planning for the future.

In keeping with his own aim to seek truth from data, Silver visits the most successful forecasters in a range of areas, from hurricanes to baseball, from the poker table to the stock market, from Capitol Hill to the NBA. He explains and evaluates how these forecasters think and what bonds they share. What lies behind their success? Are they good—or just lucky? What patterns have they unraveled? And are their forecasts really right? He explores unanticipated commonalities and exposes unexpected juxtapositions. And sometimes, it is not so much how good a prediction is in an absolute sense that matters but how good it is relative to the competition. In other cases, prediction is still a very rudimentary—and dangerous—science.

Silver observes that the most accurate forecasters tend to have a superior command of probability, and they tend to be both humble and hardworking. They distinguish the predictable from the unpredictable, and they notice a thousand little details that lead them closer to the truth. Because of their appreciation of probability, they can distinguish the signal from the noise.

With everything from the health of the global economy to our ability to fight terrorism dependent on the quality of our predictions, Nate Silver’s insights are an essential read.

Slay the calculus monster with this user-friendly guide

Calculus For Dummies, 2nd Edition makes calculus manageable—even if you're one of the many students who sweat at the thought of it. By breaking down differentiation and integration into digestible concepts, this guide helps you build a stronger foundation with a solid understanding of the big ideas at work. This user-friendly math book leads you step-by-step through each concept, operation, and solution, explaining the "how" and "why" in plain English instead of math-speak. Through relevant instruction and practical examples, you'll soon learn that real-life calculus isn't nearly the monster it's made out to be.

Calculus is a required course for many college majors, and for students without a strong math foundation, it can be a real barrier to graduation. Breaking that barrier down means recognizing calculus for what it is—simply a tool for studying the ways in which variables interact. It's the logical extension of the algebra, geometry, and trigonometry you've already taken, and Calculus For Dummies, 2nd Edition proves that if you can master those classes, you can tackle calculus and win.

Includes foundations in algebra, trigonometry, and pre-calculus conceptsExplores sequences, series, and graphing common functionsInstructs you how to approximate area with integrationFeatures things to remember, things to forget, and things you can't get away withStop fearing calculus, and learn to embrace the challenge. With this comprehensive study guide, you'll gain the skills and confidence that make all the difference. Calculus For Dummies, 2nd Edition provides a roadmap for success, and the backup you need to get there.

Fortunately for you, there's Schaum's.

More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

This Schaum's Outline gives you

1,370 fully solved problems Complete review of all course fundamentals Clear, concise explanations of all Advanced Calculus conceptsFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!

Topics include: Numbers; Sequences; Functions, Limits, and Continuity; Derivatives; Integrals; Partial Derivatives; Vectors; Applications of Partial Derivatives; Multiple Integrals; Line Integrals, Surface Integrals, and Integral Theorems; Infinite Series; Improper Integrals; Fourier Series; Fourier Integrals; Gamma and Beta Functions; and Functions of a Complex Variable

Schaum's Outlines--Problem Solved.

1001 Calculus Practice Problems For Dummies takes youbeyond the instruction and guidance offered in Calculus ForDummies, giving you 1001 opportunities to practice solvingproblems from the major topics in your calculus course. Plus, anonline component provides you with a collection of calculusproblems presented in multiple-choice format to further help youtest your skills as you go.

Gives you a chance to practice and reinforce the skills youlearn in your calculus courseHelps you refine your understanding of calculusPractice problems with answer explanations that detail everystep of every problemThe practice problems in 1001 Calculus Practice Problems ForDummies range in areas of difficulty and style, providing youwith the practice help you need to score high at exam time.

An Introduction to Numerical Methods and Analysis, SecondEdition reflects the latest trends in the field, includesnew material and revised exercises, and offers a unique emphasis onapplications. The author clearly explains how to both construct andevaluate approximations for accuracy and performance, which are keyskills in a variety of fields. A wide range of higher-level methodsand solutions, including new topics such as the roots ofpolynomials, spectral collocation, finite element ideas, andClenshaw-Curtis quadrature, are presented from an introductoryperspective, and theSecond Edition also features:ulstyle="line-height: 25px; margin-left: 15px; margin-top: 0px; font-family: Arial; font-size: 13px;"Chapters and sections that begin with basic, elementarymaterial followed by gradual coverage of more advancedmaterialExercises ranging from simple hand computations to challengingderivations and minor proofs to programming exercisesWidespread exposure and utilization of MATLAB®An appendix that contains proofs of various theorems and othermaterial

A self-contained text, it presents the necessary background on the limit concept, and the first seven chapters could constitute a one-semester introduction to limits. Subsequent chapters discuss differential calculus of the real line, the Riemann-Stieltjes integral, sequences and series of functions, transcendental functions, inner product spaces and Fourier series, normed linear spaces and the Riesz representation theorem, and the Lebesgue integral. Supplementary materials include an appendix on vector spaces and more than 750 exercises of varying degrees of difficulty. Hints and solutions to selected exercises, indicated by an asterisk, appear at the back of the book.

The book is divided into three parts and begins with the basics: models, probability, Bayes’ rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment.

This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business.

Accessible, including the basics of essential concepts of probability and random samplingExamples with R programming language and JAGS softwareComprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis)Coverage of experiment planningR and JAGS computer programming code on websiteExercises have explicit purposes and guidelines for accomplishmentProvides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs

This authoritative, modern translation by I. Bernard Cohen and Anne Whitman, the first in more than 285 years, is based on the 1726 edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms.

Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the Principia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system.

The translation-only edition of this preeminent work is truly accessible for today's scientists, scholars, and students.

The Future of the Mind brings a topic that once belonged solely to the province of science fiction into a startling new reality. This scientific tour de force unveils the astonishing research being done in top laboratories around the world—all based on the latest advancements in neuroscience and physics—including recent experiments in telepathy, mind control, avatars, telekinesis, and recording memories and dreams. The Future of the Mind is an extraordinary, mind-boggling exploration of the frontiers of neuroscience. Dr. Kaku looks toward the day when we may achieve the ability to upload the human brain to a computer, neuron for neuron; project thoughts and emotions around the world on a brain-net; take a “smart pill” to enhance cognition; send our consciousness across the universe; and push the very limits of immortality.

"This is quite a well-done book: very tightly organized,better-than-average exposition, and numerous examples,illustrations, and applications."

—Mathematical Reviews of the American MathematicalSociety

An Introduction to Linear Programming and Game Theory, ThirdEdition presents a rigorous, yet accessible, introduction tothe theoretical concepts and computational techniques of linearprogramming and game theory. Now with more extensive modelingexercises and detailed integer programming examples, this bookuniquely illustrates how mathematics can be used in real-worldapplications in the social, life, and managerial sciences,providing readers with the opportunity to develop and apply theiranalytical abilities when solving realistic problems.

This Third Edition addresses various new topics and improvementsin the field of mathematical programming, and it also presents twosoftware programs, LP Assistant and the Solver add-in for MicrosoftOffice Excel, for solving linear programming problems. LPAssistant, developed by coauthor Gerard Keough, allows readers toperform the basic steps of the algorithms provided in the book andis freely available via the book's related Web site. The use of thesensitivity analysis report and integer programming algorithm fromthe Solver add-in for Microsoft Office Excel is introduced soreaders can solve the book's linear and integer programmingproblems. A detailed appendix contains instructions for the use ofboth applications.

Additional features of the Third Edition include:

A discussion of sensitivity analysis for the two-variableproblem, along with new examples demonstrating integer programming,non-linear programming, and make vs. buy modelsRevised proofs and a discussion on the relevance and solution ofthe dual problem

A section on developing an example in Data EnvelopmentAnalysis

An outline of the proof of John Nash's theorem on the existenceof equilibrium strategy pairs for non-cooperative, non-zero-sumgames

Providing a complete mathematical development of all presentedconcepts and examples, Introduction to Linear Programming andGame Theory, Third Edition is an ideal text for linearprogramming and mathematical modeling courses at theupper-undergraduate and graduate levels. It also serves as avaluable reference for professionals who use game theory inbusiness, economics, and management science.

Physicist Dave Goldberg speeds across space, time and everything in between showing that our elegant universe—from the Higgs boson to antimatter to the most massive group of galaxies—is shaped by hidden symmetries that have driven all our recent discoveries about the universe and all the ones to come.

Why is the sky dark at night? If there is anti-matter, can there be anti-people? Why are past, present, and future our only options? Saluting the brilliant but unsung female mathematician Emmy Noether as well as other giants of physics, Goldberg answers these questions and more, exuberantly demonstrating that symmetry is the big idea—and the key to what lies ahead.

From the Trade Paperback edition.

This authoritative, modern translation by I. Bernard Cohen and Anne Whitman, the first in more than 285 years, is based on the 1726 edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms.

Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the Principia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system.

The illuminating Guide to Newton's Principia by I. Bernard Cohen makes this preeminent work truly accessible for today's scientists, scholars, and students.

The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several variables: the space of several variables and continuous functions, differentiation, multiple integrals, and line and surface integrals, concluding with a selection of related topics. Complete solutions to the problems appear at the end of the text.

"The main object of this book is to dispel the fear of mathematics," declares author W. W. Sawyer, adding that "Many people regard mathematicians as a race apart, possessed of almost supernatural powers. While this is very flattering for successful mathematicians, it is very bad for those who, for one reason or another, are attempting to learn the subject." Now retired, Sawyer won international renown for his innovative teaching methods, which he used at colleges in England and Scotland as well as Africa, New Zealand, and North America. His insights into the pleasures and practicalities of mathematics will appeal to readers of all backgrounds.

Want to "know it ALL" when it comes to calculus? This book gives you the expert, one-on-one instruction you need, whether you're new to calculus or you're looking to ramp up your skills. Providing easy-to-understand concepts and thoroughly explained exercises, math whiz Stan Gibilisco serves as your own private tutor--without the expense! His clear, friendly guidance helps you tackle the concepts and problems that confuse you the most and work through them at your own pace.

Train your brain with ease! Calculus Know-It-ALL features:

Checkpoints to help you track your knowledge and skill level Problem/solution pairs and chapter-ending quizzes to reinforce learning Fully explained answers to all practice exercises A multiple-choice exam to prepare you for standardized tests "Extra Credit" and "Challenge" problems to stretch your mindStan's expert guidance gives you the know-how to:

Understand mappings, relations, and functions Calculate limits and determine continuity Differentiate and integrate functions Analyze graphs using first and second derivatives Define and evaluate inverse functions Use specialized integration techniques Determine arc lengths, surface areas, and solid volumes Work with multivariable functions Take college entrance examinations with confidence And much more!For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions.

And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.

But while the importance of the calculus and mathematical analysis ― the core of modern mathematics ― cannot be overemphasized, the value of this first comprehensive critical history of the calculus goes far beyond the subject matter. This book will fully counteract the impression of laymen, and of many mathematicians, that the great achievements of mathematics were formulated from the beginning in final form. It will give readers a sense of mathematics not as a technique, but as a habit of mind, and serve to bridge the gap between the sciences and the humanities. It will also make abundantly clear the modern understanding of mathematics by showing in detail how the concepts of the calculus gradually changed from the Greek view of the reality and immanence of mathematics to the revised concept of mathematical rigor developed by the great 19th century mathematicians, which held that any premises were valid so long as they were consistent with one another. It will make clear the ideas contributed by Zeno, Plato, Pythagoras, Eudoxus, the Arabic and Scholastic mathematicians, Newton, Leibnitz, Taylor, Descartes, Euler, Lagrange, Cantor, Weierstrass, and many others in the long passage from the Greek "method of exhaustion" and Zeno's paradoxes to the modern concept of the limit independent of sense experience; and illuminate not only the methods of mathematical discovery, but the foundations of mathematical thought as well.

The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

Review from the first edition:

"This book is intended for the student who has a good, but naïve, understanding of elementary calculus and now wishes to gain a thorough understanding of a few basic concepts in analysis.... The author has tried to write in an informal but precise style, stressing motivation and methods of proof, and ... has succeeded admirably."

—MATHEMATICAL REVIEWS

See Additional Notes for instructions to download the highly interactive PC software. Used in thousands of schools and colleges worldwide the software is designed to work as an interactive textbook on your PC screen.

Comprising hundreds of menu selected colourful topics where the graphic images (from your eBook) are brought to life for every value change along with many additional learning software features.

A combined eBook and educational software package at a tiny fraction of the previously published price.

Chapters (958 topics): - Introduction, Electronics, Basic Electronics, DC Current Flow, Resistor Value Test, Simple DC Circuits, Types of Switching, Variable Voltages, Ohm's Law, DC Voltage, DC Current, Series/Parallel Resistors, AC Measurements, AC Voltage and Current, AC Theory, RCL Series Circuits, RCL Parallel Circuits, Capacitance, Capacitors, Inductance, Inductors, Impedance, Radio and Communication, Tuned Circuits, Attenuators, Passive Filters, Active Filters, Oscillators, Circuit Theorems, Complex Numbers, DC Power, AC Power, Silicon Controlled Rectifier, Power Supplies, Voltage Regulation, Magnetism, Electric Machines, Transformers, Three Phase Systems, Energy Transfer and Cost, Atomic Structures, Diode Theory, Diode Applications, Transistor Theory, Bipolar Transistor, Transistor Configurations, Active Transistor Circuits, Field Effect Transistors, Basic Operational Amplifier, Op-Amp Theory, Op-Amp Applications, Sum and Difference Amp, Analogue Multi-meter, Measurement, Component Testing, PIC Micro, PICa(R) Microcontroller, PICa(R) Architecture, PICa(R) Analogue to Digital, PICa(R) Byte Orientated Instructions, PICa(R) Bit Orientated Instructions, PICa(R) Literal and Control Instructions, Mechanics, Area, Surface Area and Symmetry, Volume, Compound Measures, Geometry, Motion, Machines, Optics, Computing, Hardware Devices, Data Structures, Data Files, Computer Systems, Data Handling, System Development, Computer Programming, Data Analysis, Binary Numbers, Binary Arithmetic, Digital, Logic Gates 1., Logic Gates 2., Logic Families, Flip Flops, Combinational Logic, Counters, Counting, Shift Registers, 555 Timer, Logic Interfacing, Boolean and DeMorgan's, Microprocessor, Micro-Computer, Data/Address Bus, Memory Addressing, Arithmetic and Logic Unit, Clock and Reset, Instructions and Control, Memory Cells, Microprocessor Memory, Addressing Modes, Instructions Set 1., Instructions Set 2., Instructions Set 3., Mathematics, Number Systems, Number Conversion, Number Types, Compound Measures, Roots, Angles and Parallels, Triangle Ratios, Triangle Angles, Percentages, Ratios, Fractions, Vectors, Circle Angles, Laws, Algebra 0., Algebra 1., Algebra 2., Mathematical Rules, Powers and Indices, Simplifying, Equations, Graphing, Slope and Translation, Curves and Angle Conversion, Personal Finance, Additional Notes.

"Such a richness of topics and amazing splendor of illustrations!" — Mathematics Magazine

"An inviting exposition for a literate but not highly scientific audience." — American Mathematical Monthly

This fascinating book explores the connections between chaos theory, physics, biology, and mathematics. Its award-winning computer graphics, optical illusions, and games illustrate the concept of self-similarity, a typical property of fractals. Author Manfred Schroeder — hailed by Publishers Weekly as a modern Lewis Carroll — conveys memorable insights in the form of puns and puzzles that relate abstract mathematics to everyday experience.

Excellent entertainment for readers with a grasp of algebra and some calculus, this book forms a fine university-level introduction to fractal math. Eight pages of color images clarify the text, along with numerous black-and-white illustrations.

These may not sound like typical questions for an economist to ask. But Steven D. Levitt is not a typical economist. He is a much-heralded scholar who studies the riddles of everyday life—from cheating and crime to sports and child-rearing—and whose conclusions turn conventional wisdom on its head.

Freakonomics is a groundbreaking collaboration between Levitt and Stephen J. Dubner, an award-winning author and journalist. They usually begin with a mountain of data and a simple question. Some of these questions concern life-and-death issues; others have an admittedly freakish quality. Thus the new field of study contained in this book: Freakonomics.

Through forceful storytelling and wry insight, Levitt and Dubner show that economics is, at root, the study of incentives—how people get what they want, or need, especially when other people want or need the same thing. In Freakonomics, they explore the hidden side of . . . well, everything. The inner workings of a crack gang. The truth about real-estate agents. The myths of campaign finance. The telltale marks of a cheating schoolteacher. The secrets of the Ku Klux Klan.

What unites all these stories is a belief that the modern world, despite a great deal of complexity and downright deceit, is not impenetrable, is not unknowable, and—if the right questions are asked—is even more intriguing than we think. All it takes is a new way of looking.

Freakonomics establishes this unconventional premise: If morality represents how we would like the world to work, then economics represents how it actually does work. It is true that readers of this book will be armed with enough riddles and stories to last a thousand cocktail parties. But Freakonomics can provide more than that. It will literally redefine the way we view the modern world.

Bonus material added to the revised and expanded 2006 edition

The original New York Times Magazine article about Steven D. Levitt by Stephen J. Dubner, which led to the creation of this book.Seven “Freakonomics” columns written for the New York Times Magazine, published between August 2005 and April 2006.Selected entries from the Freakonomics blog, posted between April 2005 and May 2006 at http://www.freakonomics.com/blog/.Tensor Calculus contains eight chapters. The first four deal with the basic concepts of tensors, Riemannian spaces, Riemannian curvature, and spaces of constant curvature. The next three chapters are concerned with applications to classical dynamics, hydrodynamics, elasticity, electromagnetic radiation, and the theorems of Stokes and Green. In the final chapter, an introduction is given to non-Riemannian spaces including such subjects as affine, Weyl, and projective spaces. There are two appendixes which discuss the reduction of a quadratic form and multiple integration. At the conclusion of each chapter a summary of the most important formulas and a set of exercises are given. More exercises are scattered throughout the text. The special and general theory of relativity is briefly discussed where applicable.

Opening chapters on classical mechanics examine the laws of particle mechanics; generalized coordinates and differentiable manifolds; oscillations, waves, and Hilbert space; and statistical mechanics. A survey of quantum mechanics covers the old quantum theory; the quantum-mechanical substitute for phase space; quantum dynamics and the Schrödinger equation; the canonical "quantization" of a classical system; some elementary examples and original discoveries by Schrödinger and Heisenberg; generalized coordinates; linear systems and the quantization of the electromagnetic field; and quantum-statistical mechanics.

The final section on group theory and quantum mechanics of the atom explores basic notions in the theory of group representations; perturbations and the group theoretical classification of eigenvalues; spherical symmetry and spin; and the n-electron atom and the Pauli exclusion principle.

The author first applies the necessary mathematical background, including sets, inequalities, absolute value, mathematical induction, and other "precalculus" material. Chapter Two begins the actual study of differential calculus with a discussion of the key concept of function, and a thorough treatment of derivatives and limits. In Chapter Three differentiation is used as a tool; among the topics covered here are velocity, continuous and differentiable functions, the indefinite integral, local extrema, and concrete optimization problems. Chapter Four treats integral calculus, employing the standard definition of the Riemann integral, and deals with the mean value theorem for integrals, the main techniques of integration, and improper integrals. Chapter Five offers a brief introduction to differential equations and their applications, including problems of growth, decay, and motion. The final chapter is devoted to the differential calculus of functions of several variables.

Numerous problems and answers, and a newly added section of "Supplementary Hints and Answers," enable the student to test his grasp of the material before going on. Concise and well written, this text is ideal as a primary text or as a refresher for anyone wishing to review the fundamentals of this crucial discipline.

The first part of this book covers simple differential calculus, with constants, variables, functions, increments, derivatives, differentiation, logarithms, curvature of curves, and similar topics. The second part covers fundamental ideas of integration (inspection, substitution, transformation, reduction) areas and volumes, mean value, successive and partial integration, double and triple integration. In all cases the author stresses practical aspects rather than theoretical, and builds upon such situations as might occur.

A 50-page section illustrates the application of calculus to specific problems of civil and nautical engineering, electricity, stress and strain, elasticity, industrial engineering, and similar fields. 756 questions answered. 566 problems to measure your knowledge and improvement; answers. 36 pages of useful constants, formulae for ready reference. Index.

The principal aim of analysis of tensors is to investigate those relations which remain valid when we change from one coordinate system to another. This book on Tensors requires only a knowledge of elementary calculus, differential equations and classical mechanics as pre-requisites. It provides the readers with all the information about the tensors along with the derivation of all the tensorial relations/equations in a simple manner. The book also deals in detail with topics of importance to the study of special and general relativity and the geometry of differentiable manifolds with a crystal clear exposition. The concepts dealt within the book are well supported by a number of solved examples. A carefully selected set of unsolved problems is also given at the end of each chapter, and the answers and hints for the solution of these problems are given at the end of the book. The applications of tensors to the fields of differential geometry, relativity, cosmology and electromagnetism is another attraction of the present book.

This book is intended to serve as text for postgraduate students of mathematics, physics and engineering. It is ideally suited for both students and teachers who are engaged in research in General Theory of Relativity and Differential Geometry.

From the Trade Paperback edition.

It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived.

As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

- Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis.

This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.

Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, semi-Markov processes, and queuing processes. Each chapter opens with an illustrative case study, and comprehensive presentations include formulation of models, determination of parameters, analysis, and interpretation of results. Programming language–independent algorithms appear for all simulation and numerical procedures.

Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on:

Transition path sampling and diffusive barrier crossing to simulaterare eventsDissipative particle dynamic as a course-grained simulation techniqueNovel schemes to compute the long-ranged forcesHamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulationsMultiple-time step algorithms as an alternative for constraintsDefects in solidsThe pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex moleculesParallel tempering for glassy HamiltoniansExamples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.

- Teaches general principles that can be applied to a wide variety of problems.

- Avoids the mindless and excessive routine computations that characterize conventional textbooks.

- Treats algebra as a logically coherent discipline, not as a disjointed collection of techniques.

- Restores proofs to their proper place to remove doubt, convey insight, and encourage precise logical thinking.

- Omits digressions, excessive formalities, and repetitive exercises.

- Covers all the algebra needed to take a calculus course.

- Includes problems (with all solutions) that extend your knowledge rather than merely reinforce it.

Contents

1. A Few Basics

2. Exponents

3. Polynomials

4. Factoring

5. Linear & Quadratic Equations

6. Inequalities & Absolute Values

7. Coordinates in a Plane

8. Functions & Graphs

9. Straight Lines

10. Circles

11. Parabolas

12. Types of Functions

13. Logarithms

14. Dividing Polynomials

15. Systems of Linear Equations

16. Geometric Progressions & Series

17. Arithmetic Progressions

18. Permutation & Combinations

19. The Binomial Theorem

20. Mathematical Induction

21. Solutions

Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

This Schaum's Outline gives you:

Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applicationsFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores!

Schaum's Outlines-Problem Solved.