## Similar

The present book consists of 17 select scientific papers from ten years of work around 2003-2013. The topic covered here is quantization in Astrophysics. We also discuss other topics for instance Pioneer spacecraft anomaly.

We discuss a number of sub-topics, for instance the use of Schrödinger equation to describe celestial quantization. Our basic proposition here is that the quantization of planetary systems corresponds to quantization of circulation as observed in superfluidity. And then we extend it

further to the use of (complex) Ginzburg-Landau equation to describe possible nonlinearity of planetary quantization.

The present book is suitable for young astronomers and astrophysicists as well as for professional astronomers who wish to update their knowledge in the vast topic of quantization in astrophysics. This book is also suitable for college students who want to know more about this subject.

If an analytical method is not available, an idea would be to recall the empirical search for solutions. We establish a domain of searching for the solutions and then we check all possible situations, and of course we retain among them only those solutions that verify our equation.

In other words, we say that the equation does not have solutions in the search domain, or the equation has n solutions in this domain. This mode of solving is called partial resolution. Partially solving a Diophantine equation may be a good start for a complete solving of the problem.

The authors have identified 62 Diophantine equations that impose such approach and they partially solved them. For an efficient resolution it was necessarily that they have constructed many useful ”tools” for partially solving the Diophantine equations into a reasonable time.

The computer programs as tools were written in Mathcad, because this is a good mathematical software where many mathematical functions are implemented. Transposing the programs into another computer language is facile, and such algorithms can be turned to account on other calculation systems with various processors.

This book contains 21 papers of plane geometry.

It deals with various topics, such as: quasi-isogonal cevians,

nedians, polar of a point with respect to a circle, anti-bisector,

aalsonti-symmedian, anti-height and their isogonal.

A nedian is a line segment that has its origin in a triangle’s vertex

and divides the opposite side in n equal segments.

The papers also study distances between remarkable points in the

2D-geometry, the circumscribed octagon and the inscribable octagon,

the circles adjointly ex-inscribed associated to a triangle, and several

classical results such as: Carnot circles, Euler’s line, Desargues

theorem, Sondat’s theorem, Dergiades theorem, Stevanovic’s

theorem, Pantazi’s theorem, and Newton’s theorem.

Special attention is given in this book to orthological triangles, biorthological

triangles, ortho-homological triangles, and trihomological

triangles.

Each paper is independent of the others. Yet, papers on the same or similar

topics are listed together one after the other.

The book is intended for College and University students and instructors that

prepare for mathematical competitions such as National and International

Mathematical Olympiads, or for the AMATYC (American Mathematical

Association for Two Year Colleges) student competition, Putnam competition,

Gheorghe Ţiţeica Romanian competition, and so on.

The book is also useful for geometrical researchers.

Florentin Smarandache introduce o noua specie poetica: poemele cu poeme. [Octavian Blaga]

Si in acest volum, fiecare poem este compus din versuri independente. Dar o legătură subtilă între versuri transcende. Aşadar, ‘poeme’ cu ‘poeme într-un vers’ [sau meta-poeme].

Cartea putea fi structurată şi diferit, ca un simplu volum de poeme într-un vers. Stilul volumului este eliptic.

Using formal models to discuss object extension and the possibility of change, as well as the rules and methods for innovation, Extenics is applied to solving contradictory problems and has become the basic theory, method and instrument to achieve this goal. In the 30 years since the foundation of Extenics, researchers have built relatively complete theoretical systems —‘extension theory’, studied formal and modeling innovation methods —‘extension innovation methods’, and launched the applications in various fields such as information, design, automation and management etc. —‘extension engineering’. Extension theory, the extension innovation method and extension engineering jointly constitute the new discipline—Extenics. At the same time, the practical activities of engineering technology and management promote the integration of various innovation methods such as TRIZ and brainstorming etc.

This book collects together, from scholars in various fields, the research achievements in Extenics and innovation methods, in order to facilitate and promote the development of Extenics and the various innovation theories and methods, as well as to improve its innovative capacity in academic and business circles.