## Similar

The 15 original research papers presented were selected from among six plenary talks, one special public talk and 41 talks by participants from about 20 countries around the world. TJJCCGG 2012 provided a forum for researchers working in computational geometry, graph theory/algorithms and their applications.

This is an engineering book. You will not find much prose in here (the author’s English is broken anyway.) Instead, this book has only bit of text and plenty of drawings attempting to describe in great detail the Wolfenstein 3D game engine and its hardware, the IBM PC with an Intel 386 CPU and a VGA graphic card.

Game Engine Black Book details techniques such as raycasting, compiled scalers, deferred rendition, VGA Mode-Y, linear feedback shift register, fixed point arithmetic, pulse width modulation, runtime generated code, self-modifying code, and many others tricks. Open up to discover the architecture of the software which pioneered the First Person Shooter genre.

An audacious, irreverent investigation of human behavior—and a first look at a revolution in the making

Our personal data has been used to spy on us, hire and fire us, and sell us stuff we don’t need. In Dataclysm, Christian Rudder uses it to show us who we truly are.

For centuries, we’ve relied on polling or small-scale lab experiments to study human behavior. Today, a new approach is possible. As we live more of our lives online, researchers can finally observe us directly, in vast numbers, and without filters. Data scientists have become the new demographers.

In this daring and original book, Rudder explains how Facebook "likes" can predict, with surprising accuracy, a person’s sexual orientation and even intelligence; how attractive women receive exponentially more interview requests; and why you must have haters to be hot. He charts the rise and fall of America’s most reviled word through Google Search and examines the new dynamics of collaborative rage on Twitter. He shows how people express themselves, both privately and publicly. What is the least Asian thing you can say? Do people bathe more in Vermont or New Jersey? What do black women think about Simon & Garfunkel? (Hint: they don’t think about Simon & Garfunkel.) Rudder also traces human migration over time, showing how groups of people move from certain small towns to the same big cities across the globe. And he grapples with the challenge of maintaining privacy in a world where these explorations are possible.

Visually arresting and full of wit and insight, Dataclysm is a new way of seeing ourselves—a brilliant alchemy, in which math is made human and numbers become the narrative of our time.

From the Hardcover edition.

In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications.

Peer under the hood of the systems you already use, and learn how to use and operate them more effectivelyMake informed decisions by identifying the strengths and weaknesses of different toolsNavigate the trade-offs around consistency, scalability, fault tolerance, and complexityUnderstand the distributed systems research upon which modern databases are builtPeek behind the scenes of major online services, and learn from their architecturesIf you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.

Get a crash course in PythonLearn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data scienceCollect, explore, clean, munge, and manipulate dataDive into the fundamentals of machine learningImplement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clusteringExplore recommender systems, natural language processing, network analysis, MapReduce, and databasesBased on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.

Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidatesIf you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource.

What You Will LearnExplore how to use different machine learning models to ask different questions of your dataLearn how to build neural networks using Keras and TheanoFind out how to write clean and elegant Python code that will optimize the strength of your algorithmsDiscover how to embed your machine learning model in a web application for increased accessibilityPredict continuous target outcomes using regression analysisUncover hidden patterns and structures in data with clusteringOrganize data using effective pre-processing techniquesGet to grips with sentiment analysis to delve deeper into textual and social media dataIn DetailMachine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success.

Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization.

Style and approachPython Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process.

Create vectors, handle variables, and perform other basic functionsInput and output dataTackle data structures such as matrices, lists, factors, and data framesWork with probability, probability distributions, and random variablesCalculate statistics and confidence intervals, and perform statistical testsCreate a variety of graphic displaysBuild statistical models with linear regressions and analysis of variance (ANOVA)Explore advanced statistical techniques, such as finding clusters in your data"Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time."—Jeffrey Ryan, software consultant and R package author

The 23 revised papers presented were carefully selected during two rounds of reviewing and improvement. Among the topics covered are coverings, convex polygons, convex polyhedra, matchings, graph colourings, crossing numbers, subdivision numbers, combinatorial optimization, combinatorics, spanning trees, various graph characteristica, convex bodies, labelling, Ramsey number estimation, etc.

This updated second edition provides guidance for database developers, advanced configuration for system administrators, and an overview of the concepts and use cases for other people on your project. Ideal for NoSQL newcomers and experienced MongoDB users alike, this guide provides numerous real-world schema design examples.

Get started with MongoDB core concepts and vocabularyPerform basic write operations at different levels of safety and speedCreate complex queries, with options for limiting, skipping, and sorting resultsDesign an application that works well with MongoDBAggregate data, including counting, finding distinct values, grouping documents, and using MapReduceGather and interpret statistics about your collections and databasesSet up replica sets and automatic failover in MongoDBUse sharding to scale horizontally, and learn how it impacts applicationsDelve into monitoring, security and authentication, backup/restore, and other administrative tasksUpdated for R 2.14 and 2.15, this second edition includes new and expanded chapters on R performance, the ggplot2 data visualization package, and parallel R computing with Hadoop.

Get started quickly with an R tutorial and hundreds of examplesExplore R syntax, objects, and other language detailsFind thousands of user-contributed R packages online, including BioconductorLearn how to use R to prepare data for analysisVisualize your data with R’s graphics, lattice, and ggplot2 packagesUse R to calculate statistical fests, fit models, and compute probability distributionsSpeed up intensive computations by writing parallel R programs for HadoopGet a complete desktop reference to RCompanies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started.

Examine the foundations of machine learning and neural networksLearn how to train feed-forward neural networksUse TensorFlow to implement your first neural networkManage problems that arise as you begin to make networks deeperBuild neural networks that analyze complex imagesPerform effective dimensionality reduction using autoencodersDive deep into sequence analysis to examine languageLearn the fundamentals of reinforcement learningSQLite is a small, embeddable, SQL-based, relational database management system. It has been widely used in low- to medium-tier database applications, especially in embedded devices. This book provides a comprehensive description of SQLite database system. It describes design principles, engineering trade-offs, implementation issues, and operations of SQLite.

Chapters 0–3 cover fundamental operations involving sets and the principle of mathematical induction, and standard combinatorial topics: basic counting principles, permutations, combinations, the inclusion-exclusion principle, generating functions, recurrence relations, and an introduction to the analysis of algorithms. Applications are emphasized wherever possible and more than 200 exercises at the ends of these chapters help students test their grasp of the material.

Chapters 4 and 5 survey graphs and digraphs, including their connectedness properties, applications of graph coloring, and more, with stress on applications to coding and other related problems. Two important problems in network optimization ― the minimal spanning tree problem and the shortest distance problem ― are covered in the last two chapters. A very brief nontechnical exposition of the theory of computational complexity and NP-completeness is outlined in the appendix.

SQLite is a small, embeddable, SQL-based, relational database management system. It has been widely used in low- to medium-tier database applications, especially in embedded devices. This book provides a comprehensive description of SQLite database system. It describes design principles, engineering trade-offs, implementation issues, and operations of SQLite.

This highly versatile text provides mathematical background used in a wide variety of disciplines, including mathematics and mathematics education, computer science, biology, chemistry, engineering, communications, and business.

Some of the major features and strengths of this textbook

More than 1,600 exercises, ranging from elementary to challenging, are included with hints/answers to all odd-numbered exercises.

Descriptions of proof techniques are accessible and lively.

Students benefit from the historical discussions throughout the textbook.

By working with a single case study throughout this thoroughly revised book, you’ll learn the entire process of exploratory data analysis—from collecting data and generating statistics to identifying patterns and testing hypotheses. You’ll explore distributions, rules of probability, visualization, and many other tools and concepts.

New chapters on regression, time series analysis, survival analysis, and analytic methods will enrich your discoveries.

Develop an understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyImport data from most sources with Python, rather than rely on data that’s cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world dataAlgorithms exert an extraordinary level of influence on our everyday lives - from dating websites and financial trading floors, through to online retailing and internet searches - Google's search algorithm is now a more closely guarded commercial secret than the recipe for Coca-Cola. Algorithms follow a series of instructions to solve a problem and will include a strategy to produce the best outcome possible from the options and permutations available. Used by scientists for many years and applied in a very specialized way they are now increasingly employed to process the vast amounts of data being generated, in investment banks, in the movie industry where they are used to predict success or failure at the box office and by social scientists and policy makers.

What if everything in life could be reduced to a simple formula? What if numbers were able to tell us which partners we were best matched with – not just in terms of attractiveness, but for a long-term committed marriage? Or if they could say which films would be the biggest hits at the box office, and what changes could be made to those films to make them even more successful? Or even who is likely to commit certain crimes, and when? This may sound like the world of science fiction, but in fact it is just the tip of the iceberg in a world that is increasingly ruled by complex algorithms and neural networks.

In The Formula, Luke Dormehl takes readers inside the world of numbers, asking how we came to believe in the all-conquering power of algorithms; introducing the mathematicians, artificial intelligence experts and Silicon Valley entrepreneurs who are shaping this brave new world, and ultimately asking how we survive in an era where numbers can sometimes seem to create as many problems as they solve.

Most of the recipes use the ggplot2 package, a powerful and flexible way to make graphs in R. If you have a basic understanding of the R language, you’re ready to get started.

Use R’s default graphics for quick exploration of dataCreate a variety of bar graphs, line graphs, and scatter plotsSummarize data distributions with histograms, density curves, box plots, and other examplesProvide annotations to help viewers interpret dataControl the overall appearance of graphicsRender data groups alongside each other for easy comparisonUse colors in plotsCreate network graphs, heat maps, and 3D scatter plotsStructure data for graphingThe Concept and Object Modeling Notation (COMN) is able to cover the full spectrum of analysis and design. A single COMN model can represent the objects and concepts in the problem space, logical data design, and concrete NoSQL and SQL document, key-value, columnar, and relational database implementations. COMN models enable an unprecedented level of traceability of requirements to implementation. COMN models can also represent the static structure of software and the predicates that represent the patterns of meaning in databases.

This book will teach you:

the simple and familiar graphical notation of COMN with its three basic shapes and four line styles how to think about objects, concepts, types, and classes in the real world, using the ordinary meanings of English words that aren’t tangled with confused techno-speak how to express logical data designs that are freer from implementation considerations than is possible in any other notation how to understand key-value, document, columnar, and table-oriented database designs in logical and physical terms how to use COMN to specify physical database implementations in any NoSQL or SQL database with the precision necessary for model-driven developmentHow do the 3.1 billion A, C, G and T letters of the human genome compare to those of a chimp or a mouse? What do the paths that millions of visitors take through a web site look like? With Visualizing Data, you learn how to answer complex questions like these with thoroughly interactive displays. We're not talking about cookie-cutter charts and graphs. This book teaches you how to design entire interfaces around large, complex data sets with the help of a powerful new design and prototyping tool called "Processing".

Used by many researchers and companies to convey specific data in a clear and understandable manner, the Processing beta is available free. With this tool and Visualizing Data as a guide, you'll learn basic visualization principles, how to choose the right kind of display for your purposes, and how to provide interactive features that will bring users to your site over and over. This book teaches you:The seven stages of visualizing data -- acquire, parse, filter, mine, represent, refine, and interactHow all data problems begin with a question and end with a narrative construct that provides a clear answer without extraneous detailsSeveral example projects with the code to make them workPositive and negative points of each representation discussed. The focus is on customization so that each one best suits what you want to convey about your data setThe book does not provide ready-made "visualizations" that can be plugged into any data set. Instead, with chapters divided by types of data rather than types of display, you'll learn how each visualization conveys the unique properties of the data it represents -- why the data was collected, what's interesting about it, and what stories it can tell. Visualizing Data teaches you how to answer questions, not simply display information.

Many businesses launch NoSQL databases without understanding the techniques for using their features most effectively. This book demonstrates the benefits of document embedding, polymorphic schemas, and other MongoDB patterns for tackling specific big data use cases, including:

Operational intelligence: Perform real-time analytics of business dataEcommerce: Use MongoDB as a product catalog master or inventory management systemContent management: Learn methods for storing content nodes, binary assets, and discussionsOnline advertising networks: Apply techniques for frequency capping ad impressions, and keyword targeting and biddingSocial networking: Learn how to store a complex social graph, modeled after Google+Online gaming: Provide concurrent access to character and world data for a multiplayer role-playing game SQLite is a small, embeddable, SQL-based, relational database management system. It has been widely used in low- to medium-tier database applications, especially in embedded devices. This book provides a comprehensive description of SQLite database system. It describes design principles, engineering trade-offs, implementation issues, and operations of SQLite.

The second edition adds a discussion of vector auto-regressive, structural vector auto-regressive, and structural vector error-correction models. To analyze the interactions between the investigated variables, further impulse response function and forecast error variance decompositions are introduced as well as forecasting. The author explains how these model types relate to each other.

Determine which data structures and algorithms are most appropriate for the problems you’re trying to solve, and understand the tradeoffs when using them in a JavaScript program. An overview of the JavaScript features used throughout the book is also included.

This book covers:

Arrays and lists: the most common data structuresStacks and queues: more complex list-like data structuresLinked lists: how they overcome the shortcomings of arraysDictionaries: storing data as key-value pairsHashing: good for quick insertion and retrievalSets: useful for storing unique elements that appear only onceBinary Trees: storing data in a hierarchical mannerGraphs and graph algorithms: ideal for modeling networksAlgorithms: including those that help you sort or search dataAdvanced algorithms: dynamic programming and greedy algorithmsWith Beautiful Data, you will:Explore the opportunities and challenges involved in working with the vast number of datasets made available by the WebLearn how to visualize trends in urban crime, using maps and data mashupsDiscover the challenges of designing a data processing system that works within the constraints of space travelLearn how crowdsourcing and transparency have combined to advance the state of drug researchUnderstand how new data can automatically trigger alerts when it matches or overlaps pre-existing dataLearn about the massive infrastructure required to create, capture, and process DNA data

That's only small sample of what you'll find in Beautiful Data. For anyone who handles data, this is a truly fascinating book. Contributors include:

Optional sections designated as "excursion" and "exploration" present interesting sidelights of graph theory and touch upon topics that allow students the opportunity to experiment and use their imaginations. Three appendixes review important facts about sets and logic, equivalence relations and functions, and the methods of proof. The text concludes with solutions or hints for odd-numbered exercises, in addition to references, indexes, and a list of symbols.

Knowledge flow- A mobile learning platform provides Apps and Books.

Knowledge flow provides learning book of Data Structures and Algorithms. This book is for all information technology and computer science students and professionals across the world. Data structure is the programmatic way of storing data and this book of data structure provides an easy way to understanding data structure.

Contents:

1. Introduction to Data Structures and Algorithms

2. Data structure for string and pattern matching Algorithm

3. Arrays and Pointers

4. Linked Lists

5. Stacks and Queues

6. Trees

7. Graphs in Data Structure

8. Sort and Search

9. AVL Search Trees

10. Warshall’s Algorithm

To find more education books, visit here http://knowledgeflow.in/books.

This valuable handbook has attracted scores of contributors since the European Journalism Centre and the Open Knowledge Foundation launched the project at MozFest 2011. Through a collection of tips and techniques from leading journalists, professors, software developers, and data analysts, you’ll learn how data can be either the source of data journalism or a tool with which the story is told—or both.

Examine the use of data journalism at the BBC, the Chicago Tribune, the Guardian, and other news organizationsExplore in-depth case studies on elections, riots, school performance, and corruptionLearn how to find data from the Web, through freedom of information laws, and by "crowd sourcing"Extract information from raw data with tips for working with numbers and statistics and using data visualizationDeliver data through infographics, news apps, open data platforms, and download links"Seamless R and C++ integration with Rcpp" is simply a wonderful book. For anyone who uses C/C++ and R, it is an indispensable resource. The writing is outstanding. A huge bonus is the section on applications. This section covers the matrix packages Armadillo and Eigen and the GNU Scientific Library as well as RInside which enables you to use R inside C++. These applications are what most of us need to know to really do scientific programming with R and C++. I love this book. -- Robert McCulloch, University of Chicago Booth School of Business

Rcpp is now considered an essential package for anybody doing serious computational research using R. Dirk's book is an excellent companion and takes the reader from a gentle introduction to more advanced applications via numerous examples and efficiency enhancing gems. The book is packed with all you might have ever wanted to know about Rcpp, its cousins (RcppArmadillo, RcppEigen .etc.), modules, package development and sugar. Overall, this book is a must-have on your shelf. -- Sanjog Misra, UCLA Anderson School of Management

The Rcpp package represents a major leap forward for scientific computations with R. With very few lines of C++ code, one has R's data structures readily at hand for further computations in C++. Hence, high-level numerical programming can be made in C++ almost as easily as in R, but often with a substantial speed gain. Dirk is a crucial person in these developments, and his book takes the reader from the first fragile steps on to using the full Rcpp machinery. A very recommended book! -- Søren Højsgaard, Department of Mathematical Sciences, Aalborg University, Denmark

"Seamless R and C ++ Integration with Rcpp" provides the first comprehensive introduction to Rcpp. Rcpp has become the most widely-used language extension for R, and is deployed by over one-hundred different CRAN and BioConductor packages. Rcpp permits users to pass scalars, vectors, matrices, list or entire R objects back and forth between R and C++ with ease. This brings the depth of the R analysis framework together with the power, speed, and efficiency of C++.

Dirk Eddelbuettel has been a contributor to CRAN for over a decade and maintains around twenty packages. He is the Debian/Ubuntu maintainer for R and other quantitative software, edits the CRAN Task Views for Finance and High-Performance Computing, is a co-founder of the annual R/Finance conference, and an editor of the Journal of Statistical Software. He holds a Ph.D. in Mathematical Economics from EHESS (Paris), and works in Chicago as a Senior Quantitative Analyst.

The "lost notebook" contains considerable material on mock theta functions and so undoubtedly emanates from the last year of Ramanujan's life. It should be emphasized that the material on mock theta functions is perhaps Ramanujan's deepest work. Mathematicians are probably several decades away from a complete understanding of those functions. More than half of the material in the book is on q-series, including mock theta functions; the remaining part deals with theta function identities, modular equations, incomplete elliptic integrals of the first kind and other integrals of theta functions, Eisenstein series, particular values of theta functions, the Rogers-Ramanujan continued fraction, other q-continued fractions, other integrals, and parts of Hecke's theory of modular forms.

Ideal for analysts, engineers, marketers, journalists, and researchers, this book describes the principles of communicating data and takes you on an in-depth tour of common visualization methods. You’ll learn how to craft articulate and creative data visualizations with Tableau Desktop 8.1 and Tableau Public 8.1.

Present comparisons of how much and how manyUse blended data sources to create ratios and ratesCreate charts to depict proportions and percentagesVisualize measures of mean, median, and modeLean how to deal with variation and uncertaintyCommunicate multiple quantities in the same viewShow how quantities and events change over timeUse maps to communicate positional dataBuild dashboards to combine several visualizations