## Similar

What if you had to take an art class in which you were only taught how to paint a fence? What if you were never shown the paintings of van Gogh and Picasso, weren't even told they existed? Alas, this is how math is taught, and so for most of us it becomes the intellectual equivalent of watching paint dry.

In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we've never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space.

Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man's journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century's leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat's last theorem, that had seemed intractable before.

At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.

Hidden symmetries were first discovered nearly two hundred years ago by French mathematician évariste Galois. They have been used extensively in the oldest and largest branch of mathematics--number theory--for such diverse applications as acoustics, radar, and codes and ciphers. They have also been employed in the study of Fibonacci numbers and to attack well-known problems such as Fermat's Last Theorem, Pythagorean Triples, and the ever-elusive Riemann Hypothesis. Mathematicians are still devising techniques for teasing out these mysterious patterns, and their uses are limited only by the imagination.

The first popular book to address representation theory and reciprocity laws, Fearless Symmetry focuses on how mathematicians solve equations and prove theorems. It discusses rules of math and why they are just as important as those in any games one might play. The book starts with basic properties of integers and permutations and reaches current research in number theory. Along the way, it takes delightful historical and philosophical digressions. Required reading for all math buffs, the book will appeal to anyone curious about popular mathematics and its myriad contributions to everyday life.

In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.

Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.

Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..

Everything you need to pass the exam and get the college credit you deserve.

CLEP* is the most popular credit-by-examination program in the country, accepted by more than 2,900 colleges and universities. For over 15 years, REA has helped students pass the CLEP* exam and earn college credit while reducing their tuition costs.

Our CLEP* test preps are perfect for adults returning to college (or attending for the first time), military service members, high-school graduates looking to earn college credit, or home-schooled students with knowledge that can translate into college credit.

There are many different ways to prepare for the CLEP*. What's best for you depends on how much time you have to study and how comfortable you are with the subject matter. Our test prep for CLEP* College Algebra and the free online tools that come with it, will allow you to create a personalized CLEP* study plan that can be customized to fit you: your schedule, your learning style, and your current level of knowledge.

Here's how it works:

Diagnostic exam at the REA Study Center focuses your study

Our online diagnostic exam pinpoints your strengths and shows you exactly where you need to focus your study. Armed with this information, you can personalize your prep and review where you need it the most.

Most complete subject review for CLEP* College Algebra

Our targeted review covers all the material you'll be expected to know for the exam and includes a glossary of must-know terms.

Two full-length practice exams

The online REA Study Center gives you two full-length practice tests and the most powerful scoring analysis and diagnostic tools available today. Instant score reports help you zero in on the CLEP* College Algebra topics that give you trouble now and show you how to arrive at the correct answer-so you'll be prepared on test day.

Unlike many authors, however, Mr. Friedberg encourages students to think about the imaginative, playful qualities of numbers as they consider such subjects as primes and divisibility, quadratic forms and residue arithmetic and quadratic reciprocity and related theorems. Moreover, the author has included a number of unusual features to challenge and stimulate students: some of the original problems in Diophantus' Arithmetica, proofs of Fermat's Last Theorem for the exponents 3and 4, and two proofs of Wilson's Theorem.

Readers with a mathematical bent will enjoy and benefit from these entertaining and thought-provoking adventures in the fascinating realm of number theory. Mr. Friedberg is currently Professor of Physics at Barnard College, where he is Chairman of the Department of Physics and Astronomy.

The book begins with a systematic study of real numbers, understood to be a set of objects satisfying certain definite axioms. The concepts of a mathematical structure and an isomorphism are introduced in Chapter 2, after a brief digression on set theory, and a proof of the uniqueness of the structure of real numbers is given as an illustration. Two other structures are then introduced, namely n-dimensional space and the field of complex numbers.

After a detailed treatment of metric spaces in Chapter 3, a general theory of limits is developed in Chapter 4. Chapter 5 treats some theorems on continuous numerical functions on the real line, and then considers the use of functional equations to introduce the logarithm and the trigonometric functions. Chapter 6 is on infinite series, dealing not only with numerical series but also with series whose terms are vectors and functions (including power series). Chapters 7 and 8 treat differential calculus proper, with Taylor's series leading to a natural extension of real analysis into the complex domain. Chapter 9 presents the general theory of Riemann integration, together with a number of its applications. Analytic functions are covered in Chapter 10, while Chapter 11 is devoted to improper integrals, and makes full use of the technique of analytic functions.

Each chapter includes a set of problems, with selected hints and answers at the end of the book. A wealth of examples and applications can be found throughout the text. Over 340 theorems are fully proved.

The book begins with fundamentals, with a definition of complex numbers, their geometric representation, their algebra, powers and roots of complex numbers, set theory as applied to complex analysis, and complex functions and sequences. The notions of proper and improper complex numbers and of infinity are fully and clearly explained, as is stereographic projection. Individual chapters then cover limits and continuity, differentiation of analytic functions, polynomials and rational functions, Mobius transformations with their circle-preserving property, exponentials and logarithms, complex integrals and the Cauchy theorem , complex series and uniform convergence, power series, Laurent series and singular points, the residue theorem and its implications, harmonic functions (a subject too often slighted in first courses in complex analysis), partial fraction expansions, conformal mapping, and analytic continuation.

Elementary functions are given a more detailed treatment than is usual for a book at this level. Also, there is an extended discussion of the Schwarz-Christolfel transformation, which is particularly important for applications.

There is a great abundance of worked-out examples, and over three hundred problems (some with hints and answers), making this an excellent textbook for classroom use as well as for independent study. A noteworthy feature is the fact that the parentage of this volume makes it possible for the student to pursue various advanced topics in more detail in the three-volume original, without the problem of having to adjust to a new terminology and notation .

In this way, IntroductoryComplex Analysis serves as an introduction not only to the whole field of complex analysis, but also to the magnum opus of an important contemporary Russian mathematician.

Key features of Number Theory: Structures, Examples, and Problems:

* A rigorous exposition starts with the natural numbers and the basics.

* Important concepts are presented with an example, which may also emphasize an application. The exposition moves systematically and intuitively to uncover deeper properties.

* Topics include divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, quadratic residues, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems are covered.

* Unique exercises reinforce and motivate the reader, with selected solutions to some of the problems.

* Glossary, bibliography, and comprehensive index round out the text.

Written by distinguished research mathematicians and renowned teachers, this text is a clear, accessible introduction to the subject and a source of fascinating problems and puzzles, from advanced high school students to undergraduates, their instructors, and general readers at all levels.

Bellos has traveled all around the globe and has plunged into history to uncover fascinating stories of mathematical achievement, from the breakthroughs of Euclid, the greatest mathematician of all time, to the creations of the Zen master of origami, one of the hottest areas of mathematical work today. Taking us into the wilds of the Amazon, he tells the story of a tribe there who can count only to five and reports on the latest findings about the math instinct—including the revelation that ants can actually count how many steps they’ve taken. Journeying to the Bay of Bengal, he interviews a Hindu sage about the brilliant mathematical insights of the Buddha, while in Japan he visits the godfather of Sudoku and introduces the brainteasing delights of mathematical games.

Exploring the mysteries of randomness, he explains why it is impossible for our iPods to truly randomly select songs. In probing the many intrigues of that most beloved of numbers, pi, he visits with two brothers so obsessed with the elusive number that they built a supercomputer in their Manhattan apartment to study it. Throughout, the journey is enhanced with a wealth of intriguing illustrations, such as of the clever puzzles known as tangrams and the crochet creation of an American math professor who suddenly realized one day that she could knit a representation of higher dimensional space that no one had been able to visualize.

Whether writing about how algebra solved Swedish traffic problems, visiting the Mental Calculation World Cup to disclose the secrets of lightning calculation, or exploring the links between pineapples and beautiful teeth, Bellos is a wonderfully engaging guide who never fails to delight even as he edifies. Here’s Looking at Euclid is a rare gem that brings the beauty of math to life.

Alpha Teach Yourself Algebra I in 24 Hours provides readers with a structured, self-paced, straight-forward tutorial on algebra. It's the perfect textbook companion for students struggling with algebra, a solid primer for those looking to get a head start on an upcoming class, and a welcome refresher for parents tasked with helping out with homework. The book provides 24 one-hour lessons, with each chapter designed to build on the previous one.

? Covers classifying number sets, expressions, polynomials, factoring, radicals, exponents and logarithms, and much more

? Each chapter ends with a quiz so readers can identify where they may need more help

"This book covers many interesting topics not usually covered in a present day undergraduate course, as well as certain basic topics such as the development of the calculus and the solution of polynomial equations. The fact that the topics are introduced in their historical contexts will enable students to better appreciate and understand the mathematical ideas involved...If one constructs a list of topics central to a history course, then they would closely resemble those chosen here."

(David Parrott, Australian Mathematical Society)

"The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community."

(European Mathematical Society)

"Since Stillwell treats many topics, most mathematicians will learn a lot from this book as well as they will find pleasant and rather clear expositions of custom materials. The book is accessible to students that have already experienced calculus, algebra and geometry and will give them a good account of how the different branches of mathematics interact."

(Denis Bonheure, Bulletin of the Belgian Society)

This third edition includes new chapters on simple groups and combinatorics, and new sections on several topics, including the Poincare conjecture. The book has also been enriched by added exercises.

László Lovász is a Senior Researcher in the Theory Group at Microsoft Corporation. He is a recipient of the 1999 Wolf Prize and the Gödel Prize for the top paper in Computer Science. József Pelikán is Professor of Mathematics in the Department of Algebra and Number Theory at Eötvös Loránd University, Hungary. In 2002, he was elected Chairman of the Advisory Board of the International Mathematical Olympiad. Katalin Vesztergombi is Senior Lecturer in the Department of Mathematics at the University of Washington.

Every number in this book is identified by its "field marks," "similar species," "personality," and "associations." For example, one field mark of the number 6 is that it is the first perfect number-- the sum of its divisors (1, 2, and 3) is equal to the number itself. Thus 28, the next perfect number, is a similar species. And the fact that 6 can easily be broken into 2 and 3 is part of its personality, a trait that is helpful when large numbers are being either multiplied or divided by 6. Associations with 6 include its relationship to the radius of a circle. In addition to such classifications, special attention is paid to dozens of other fascinating numbers, including zero, pi, 10 to the 76th power (the number of particles in the universe), transfinite and other exceptionally larger numbers, and the concept of infinity.

Ideal for beginners but organized to appeal to the mathematically literate, The Kingdom of Infinite Number will not only add to readers' enjoyment of mathematics, but to their problem-solving abilities as well.

Written by two pioneers of the concept of math anxiety and how to overcome it, Arithmetic and Algebra Again has helped tens of thousands of people conquer their irrational fear of math.

This revised and expanded second edition of the perennial bestseller:

Features the latest techniques for breaking through common anxieties about numbers Takes a real-world approach that lets mathphobes learn the math they need as they need it Covers all key math areas--from whole numbers and fractions to basic algebra Features a section on practical math for banking, mortgages, interest, and statistics and probability Includes a new section on the graphing calculator, a chapter on the metric system, a section on word problems, and all updated exercisesIn addition, it studies semigroup, group action, Hopf's group, topological groups and Lie groups with their actions, applications of ring theory to algebraic geometry, and defines Zariski topology, as well as applications of module theory to structure theory of rings and homological algebra. Algebraic aspects of classical number theory and algebraic number theory are also discussed with an eye to developing modern cryptography. Topics on applications to algebraic topology, category theory, algebraic geometry, algebraic number theory, cryptography and theoretical computer science interlink the subject with different areas. Each chapter discusses individual topics, starting from the basics, with the help of illustrative examples. This comprehensive text with a broad variety of concepts, applications, examples, exercises and historical notes represents a valuable and unique resource.

This popular study guide shows students easy ways to solve what they struggle with most in algebra: word problems. How to Solve Word Problems in Algebra, Second Edition, is ideal for anyone who wants to master these skills. Completely updated, with contemporary language and examples, features solution methods that are easy to learn and remember, plus a self-test.

Practice makes perfect—and helps deepen your understanding of algebra by solving problems

1,001 Algebra I Practice Problems For Dummies, with free access to online practice problems, takes you beyond the instruction and guidance offered in Algebra I For Dummies, giving you 1,001 opportunities to practice solving problems from the major topics in algebra. You start with some basic operations, move on to algebraic properties, polynomials, and quadratic equations, and finish up with graphing. Every practice question includes not only a solution but a step-by-step explanation. From the book, go online and find:

One year free subscription to all 1,001 practice problems On-the-go access any way you want it—from your computer, smart phone, or tablet Multiple choice questions on all you math course topics Personalized reports that track your progress and help show you where you need to study the most Customized practice sets for self-directed study Practice problems categorized as easy, medium, or hardWhether you're studying algebra at the high school or college level, the practice problems in 1,001 Algebra I Practice Problems For Dummies give you a chance to practice and reinforce the skill s you learn in the classroom and help you refine your understanding of algebra.

Note to readers: 1,001 Algebra I Practice Problems For Dummies, which only includes problems to solve, is a great companion to Algebra I For Dummies, 2nd Edition which offers complete instruction on all topics in a typical Algebra I course.

The exposition concentrates on key concepts and then elementary results concerning these numbers. The reader learns how complex numbers can be used to solve algebraic equations and to understand the geometric interpretation of complex numbers and the operations involving them.

The theoretical parts of the book are augmented with rich exercises and problems at various levels of difficulty. A special feature of the book is the last chapter, a selection of outstanding Olympiad and other important mathematical contest problems solved by employing the methods already presented.

The book reflects the unique experience of the authors. It distills a vast mathematical literature, most of which is unknown to the western public, and captures the essence of an abundant problem culture. The target audience includes undergraduates, high school students and their teachers, mathematical contestants (such as those training for Olympiads or the W. L. Putnam Mathematical Competition) and their coaches, as well as anyone interested in essential mathematics.

Ready to learn math fundamentals but can't seem to get your brain to function? No problem! Add Pre-Algebra Demystified, Second Edition, to the equation and you'll solve your dilemma in no time.

Written in a step-by-step format, this practical guide begins by covering whole numbers, integers, fractions, decimals, and percents. You'll move on to expressions, equations, measurement, and graphing. Operations with monomials and polynomials are also discussed. Detailed examples, concise explanations, and worked problems make it easy to understand the material, and end-of-chapter quizzes and a final exam help reinforce learning.

It's a no-brainer! You'll learn:

Addition, subtraction, multiplication, and division of whole numbers, integers, fractions, decimals, and algebraic expressions Techniques for solving equations and problems Measures of length, weight, capacity, and time Methods for plotting points and graphing linesSimple enough for a beginner, but challenging enough for an advanced student, Pre-Algebra Demystified, Second Edition, helps you master this essential mathematics subject. It's also the perfect way to review the topic if all you need is a quick refresh.

Peter Higgins distills centuries of work into one delightful narrative that celebrates the mystery of numbers and explains how different kinds of numbers arose and why they are useful. Full of historical snippets and interesting examples, the book ranges from simple number puzzles and magic tricks, to showing how ideas about numbers relate to real-world problems, such as: How are our bank account details kept secure when shopping over the internet? What are the chances of winning at Russian roulette; or of being dealt a flush in a poker hand?

This fascinating book will inspire and entertain readers across a range of abilities. Easy material is blended with more challenging ideas about infinity and complex numbers, and a final chapter "For Connoisseurs" works through some of the particular claims and examples in the book in mathematical language for those who appreciate a complete explanation.

As our understanding of numbers continues to evolve, this book invites us to rediscover the mystery and beauty of numbers and reminds us that the story of numbers is a tale with a long way to run...

Linear Sentences in One Variable

Segments, Lines, and Inequalities

Linear Sentences in Two Variables

Linear Equations in Three Variables

Polynomial Arithmetic

Factoring Polynomials

Rational Expressions

Relations and Functions

Polynomial Functions

Radicals and Complex Numbers

Quadratics in One Variable

Conic Sections

Quadratic Systems

Exponential and Logarithmic Functions

Sequences and Series

Additional Topics

Word Problems

Review Questions

Resource Center

Glossary

Though the book contains advanced material, such as cryptography on elliptic curves, Goppa codes using algebraic curves over finite fields, and the recent AKS polynomial primality test, the authors' objective has been to keep the exposition as self-contained and elementary as possible. Therefore the book will be useful to students and researchers, both in theoretical (e.g. mathematicians) and in applied sciences (e.g. physicists, engineers, computer scientists, etc.) seeking a friendly introduction to the important subjects treated here. The book will also be useful for teachers who intend to give courses on these topics.

Fortunately, there's Schaum's. This all-in-one-package includes more than 1,900 fully solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 30 detailed videos featuring Math instructors who explain how to solve the most commonly tested problems--it's just like having your own virtual tutor! You'll find everything you need to build confidence, skills, and knowledge for the highest score possible.

More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. Helpful tables and illustrations increase your understanding of the subject at hand.

This Schaum's Outline gives you

1,940 fully solved problems Hundreds of additional practice problems with answers Coverage of all course conceptsFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!

Schaum's Outlines--Problem Solved.

Appropriate for anyone familiar with algebra at the high-school level, The Theory of Remainders offers a captivating introduction to both number theory and abstract algebra. Both elementary and challenging, it provides a view of mathematics as a conceptual net and illustrates the differences between conceptual and paraconceptual claims—an excellent start to expanding students' perspectives on mathematics.

Exercises throughout the book form an integral part of the text, extending students' experience with the concepts under discussion and presenting opportunities to observe patterns. In addition to the exercises, a series of optional problems allows more advanced readers to further develop the concepts.

In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.

By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success.

Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebra I skills, because you'll need a strong foundation to build upon. From there, you'll work through practice problems to clarify concepts and improve understanding and retention.

Revisit quadratic equations, inequalities, radicals, and basic graphs Master quadratic, exponential, and logarithmic functions Tackle conic sections, as well as linear and nonlinear systems Grasp the concepts of matrices, sequences, and imaginary numbersAlgebra II Workbook For Dummies, 2nd Edition includes sections on graphing and special sequences to familiarize you with the key concepts that will follow you to trigonometry and beyond. Don't waste any time getting started. Algebra II Workbook For Dummies, 2nd Edition is your complete guide to success.

Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive it off the lot? Can you really afford an XBox 360 and a new iPhone? Learn how to put algebra to work for you, and nail your class exams along the way.

Your time is way too valuable to waste struggling with new concepts. Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Algebra uses a visually rich format specifically designed to take advantage of the way your brain really works.

Fortunately for you, there's Schaum's.

More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

This Schaum's Outline gives you

885 fully solved problems Complete review of all course fundamentalsFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!

Topics include: Fundamental Concepts; Polynomials; Rational Expressions; First-Degree Equations and Inequalities; Exponents, Roots, and Radicals; Second-Degree Equations and Inequalities; Systems of Equations and Inequalities; Relations and Functions; Exponential and Logarithmic Functions; and Sequences, Series, and the Binomial Theorem

Schaum's Outlines--Problem Solved.

Key features of Putnam and Beyond

* Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants.

* Each chapter systematically presents a single subject within which problems are clustered in every section according to the specific topic.

* The exposition is driven by more than 1100 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors.

* Complete solutions to all problems are given at the end of the book. The source, author, and historical background are cited whenever possible.

This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for self-study by undergraduate and graduate students, as well as teachers and researchers in the physical sciences who wish to to expand their mathematical horizons.

"The main object of this book is to dispel the fear of mathematics," declares author W. W. Sawyer, adding that "Many people regard mathematicians as a race apart, possessed of almost supernatural powers. While this is very flattering for successful mathematicians, it is very bad for those who, for one reason or another, are attempting to learn the subject." Now retired, Sawyer won international renown for his innovative teaching methods, which he used at colleges in England and Scotland as well as Africa, New Zealand, and North America. His insights into the pleasures and practicalities of mathematics will appeal to readers of all backgrounds.

The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions.

No prerequisites are assumed other than the usual demand for suitable mathematical maturity. Thus the text starts by discussing vector spaces, linear independence, span, basis, and dimension. The book then deals with linear maps, eigenvalues, and eigenvectors. Inner-product spaces are introduced, leading to the finite-dimensional spectral theorem and its consequences. Generalized eigenvectors are then used to provide insight into the structure of a linear operator.

Tips for simplifying tricky basic math and pre-algebra operations

Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations.

Explanations and practical examples that mirror today's teaching methods Relevant cultural vernacular and references Standard For Dummiesmaterials that match the current standard and designBasic Math & Pre-Algebra For Dummies takes the intimidation out of tricky operations and helps you get ready for algebra!

The problems are clustered by topic into self-contained sections with solutions provided separately. All sections start with an essay discussing basic facts and one or two representative examples. A list of carefully chosen problems follows and the reader is invited to take them on. Additionally, historical insights and asides are presented to stimulate further inquiry. The emphasis throughout is on encouraging readers to move away from routine exercises and memorized algorithms toward creative solutions to open-ended problems.

Aimed at motivated high school and beginning college students and instructors, this work can be used as a text for advanced problem- solving courses, for self-study, or as a resource for teachers and students training for mathematical competitions and for teacher professional development, seminars, and workshops.

Leading experts have joined forces for the first time to explain the state of the art in quantum computing, hash-based cryptography, code-based cryptography, lattice-based cryptography, and multivariate cryptography. Mathematical foundations and implementation issues are included.

This book is an essential resource for students and researchers who want to contribute to the field of post-quantum cryptography.

Basic Math & Pre-Algebra Workbook For Dummies is your ticket to finally getting a handle on math! Designed to help you strengthen your weak spots and pinpoint problem areas, this book provides hundreds of practice problems to help you get over the hump. Each section includes a brief review of key concepts and full explanations for every practice problem, so you'll always know exactly where you went wrong. The companion website gives you access to quizzes for each chapter, so you can test your understanding and identify your sticking points before moving on to the next topic. You'll brush up on the rules of basic operations, and then learn what to do when the numbers just won't behave—negative numbers, inequalities, algebraic expressions, scientific notation, and other tricky situations will become second nature as you refresh what you know and learn what you missed.

Each math class you take builds on the ones that came before; if you got lost somewhere around fractions, you'll have a difficult time keeping up in Algebra, Geometry, Trigonometry, and Calculus—so don't fall behind! This book provides plenty of practice and patient guidance to help you slay the math monster once and for all. Make sense of fractions, decimals, and percentages Learn how to handle inequalities, exponents, square roots, and absolute values Simplify expressions and solve simple algebraic equations Find your way around a triangle, circle, trapezoid, and more

Once you get comfortable with the rules and operations, math takes on a whole new dimension. Curiosity replaces anxiety, and problems start feeling like puzzles rather than hurdles. All it takes is practice. Basic Math & Pre-Algebra Workbook For Dummies is your ultimate math coach, with hundreds of guided practice practice problems to help you break through the math barrier.