## Similar Ebooks

About this new exam: The AP Physics 1 course focuses on the big ideas typically included in the first and second semesters of an algebra-based, introductory college-level physics course. REA's all-new AP Physics 1 Crash Course is perfect for the time-crunched student, the last-minute studier, or anyone who wants a refresher on the subject.

Are you crunched for time? Have you started studying for your Advanced Placement® Physics 1 exam yet? How will you memorize everything you need to know before the test? Do you wish there was a fast and easy way to study for the exam AND boost your score?

If this sounds like you, don't panic. REA's Crash Course for AP® Physics 1 is just what you need.

Our Crash Course gives you:

Targeted, Focused Review - Study Only What You Need to Know

The Crash Course is based on an in-depth analysis of the new AP® Physics 1 course description outline and actual AP® test questions. It covers only the information tested on the exam, so you can make the most of your valuable study time. Written by an AP® Physics teacher, the targeted review prepares students for the new test by focusing on the new framework concepts and learning objectives tested on the redesigned AP® Physics 1 exam.

Easy-to-read review chapters in outline format cover all the topics tested on the new exam: kinematics; dynamics; Newton's laws; circular motion and universal law of gravitation; work, energy, and conservation of energy; rotational motion; DC circuits; mechanical waves and sound; and more.

The book also features must-know terms all AP® Physics students should know before test day.

Expert Test-taking Strategies

With our Crash Course, you can study the subject faster, learn the crucial material, and boost your AP® score all in less time. Our author shares detailed question-level strategies and explains the best way to answer the multiple-choice and free-response questions you'll encounter on test day. By following our expert tips and advice, you can boost your overall point score!

FREE Practice Exam

After studying the material in the Crash Course, go to the online REA Study Center and test what you've learned. Our free practice exam features timed testing, detailed explanations of answers, and automatic scoring analysis. The exam is balanced to include every topic and type of question found on the actual AP® exam, so you know you're studying the smart way.

Whether you're cramming for the test at the last minute, looking for extra review, or want to study on your own in preparation for the exams - this is the study guide every AP® Physics 1 student must have.

When it's crucial crunch time and your Advanced Placement® exam is just around the corner, you need REA's Crash Course for AP® Physics 1!

The book gives the steps to follow to understand fundamental theories and to apply these to real materials.

The book is designed to meet the requirements of undergraduate and postgraduate students of physics for their courses in solid state physics, condensed matter physics and material science.

KEY FEATURES

• Puts a conceptual emphasis on the subject.

• Includes numerous diagrams and figures to clarify the concepts.

• Gives step-by-step explanations of theories.

• Provides chapter-end exercises to test the knowledge acquired.

The complexity and cost associated with technology scaling have compelled researchers in the disciplines of engineering and physics to optimize previous generation nodes to improve system-on-chip performance. This is especially relevant to participate in the increased attractiveness of the Internet of Things (IoT). This book additionally provides scholarly and practical examples of principles in microelectronic circuit design and layout to mitigate technology limits of previous generation nodes. Readers are encouraged to intellectually apply the knowledge derived from this book to further research and innovation in prolonging Moore’s law and associated principles.

The book begins with a brief introduction to binary rare earth oxides, their physical and chemical stabilities, polymorphism, crystal structures and phase transformation and the association with current applications. The book goes on to present the band structure of the oxides using several quantum chemical calculations, which belong to a newly developed area in the binary rare earth oxides. Central to this chapter are the characterizations of electrical, magnetic and optical properties, as well as details of single crystal growth and particle preparation methods that have progressed in recent years. Later chapters concentrate on thermo-chemical properties and trace determination techniques. The final chapter contains a variety of useful applications in various fields such as phosphors, glass abrasives, automotive catalysts, fuel cells, solid electrolytes, sunscreens, iron steels, and biological materials.

This book is an invaluable resource for materials scientists and solid-state physicists and chemists with an interest in rare earth oxides, as well as advanced students and graduates who require an approach to familiarize them with this field. This book provides guidance through a comprehensive review of all the characteristics of binary rare earth oxides.

A cocktail party. A terrorist cell. Ancient bacteria. An international conglomerate. All are networks, and all are a part of a surprising scientific revolution. In Linked, Albert-László Barabási, the nation's foremost expert in the new science of networks, takes us on an intellectual adventure to prove that social networks, corporations, and living organisms are more similar than previously thought. Barabási shows that grasping a full understanding of network science will someday allow us to design blue-chip businesses, stop the outbreak of deadly diseases, and influence the exchange of ideas and information. Just as James Gleick and the Erdos-Rényi model brought the discovery of chaos theory to the general public, Linked tells the story of the true science of the future and of experiments in statistical mechanics on the internet, all vital parts of what would eventually be called the Barabási-Albert model.

The aim of this book is to make the analysis of these materials accessible to designers by developing a "strength of materials" approach to the analysis and design of such SMA components inspired from their various applications with a review of various factors influencing the design process for such materials.

This fifth edition includes an additional chapter on 'Quantum Optical Effects' where the theory of quantum optical effects in semiconductors is detailed. Besides deriving the 'semiconductor luminescence equations' and the expression for the stationary luminescence spectrum, results are presented to show the importance of Coulombic effects on the semiconductor luminescence and to elucidate the role of excitonic populations.

The book is divided into four main parts. In the first part, the concept of entanglement, and methods for computing it, in quantum field theories is reviewed. In the second part, an overview of the AdS/CFT correspondence is given and the holographic entanglement entropy prescription is explained. In the third part, the time-dependence of entanglement entropy in out-of-equilibrium systems, and applications to many body physics are explored using holographic methods. The last part focuses on the connection between entanglement and geometry. Known constraints on the holographic map, as well as, elaboration of entanglement being a fundamental building block of geometry are explained.

The book is a useful resource for researchers and graduate students interested in string theory and holography, condensed matter and quantum information, as it tries to connect these different subjects linked by the common theme of quantum entanglement.

Density functional theory (DFT) is one of the most frequentlyused computational tools for studying and predicting the propertiesof isolated molecules, bulk solids, and material interfaces,including surfaces. Although the theoretical underpinnings of DFTare quite complicated, this book demonstrates that the basicconcepts underlying the calculations are simple enough to beunderstood by anyone with a background in chemistry, physics,engineering, or mathematics. The authors show how the widespreadavailability of powerful DFT codes makes it possible for studentsand researchers to apply this important computational technique toa broad range of fundamental and applied problems.

Density Functional Theory: A Practical Introductionoffers a concise, easy-to-follow introduction to the key conceptsand practical applications of DFT, focusing on plane-wave DFT. Theauthors have many years of experience introducing DFT to studentsfrom a variety of backgrounds. The book therefore offers severalfeatures that have proven to be helpful in enabling students tomaster the subject, including:

Problem sets in each chapter that give readers the opportunityto test their knowledge by performing their own calculations

Worked examples that demonstrate how DFT calculations are usedto solve real-world problems

Further readings listed in each chapter enabling readers toinvestigate specific topics in greater depth

This text is written at a level suitable for individuals from avariety of scientific, mathematical, and engineering backgrounds.No previous experience working with DFT calculations is needed.

The book consists of two parts: one corresponds to developing the necessary mathematics and the other discusses applications to physical problems. The section on mathematics is a quick, but more-or-less complete, review of topology. The focus is on explaining fundamental concepts rather than dwelling on details of proofs while retaining the mathematical flavour. There is an overview chapter at the beginning and a recapitulation chapter on group theory. The physics section starts with an introduction and then goes on to topics in quantum mechanics, statistical mechanics of polymers, knots, and vertex models, solid state physics, exotic excitations such as Dirac quasiparticles, Majorana modes, Abelian and non-Abelian anyons. Quantum spin liquids and quantum information-processing are also covered in some detail.

"The book goes beyond the usual textbook in that it provides more specific examples of real-world defect physics ... an easy reading, broad introductory overview of the field"

―Materials Today

"... well written, with clear, lucid explanations ..."

―Chemistry World

This revised edition provides the most complete, up-to-date coverage of the fundamental knowledge of semiconductors, including a new chapter that expands on the latest technology and applications of semiconductors. In addition to inclusion of additional chapter problems and worked examples, it provides more detail on solid-state lighting (LEDs and laser diodes). The authors have achieved a unified overview of dopants and defects, offering a solid foundation for experimental methods and the theory of defects in semiconductors.

Matthew D. McCluskey

is a professor in the Department of Physics and Astronomy and Materials Science Program at Washington State University (WSU), Pullman, Washington. He received a Physics Ph.D. from the University of California (UC), Berkeley.Eugene E. Haller

is a professor emeritus at the University of California, Berkeley, and a member of the National Academy of Engineering. He received a Ph.D. in Solid State and Applied Physics from the University of Basel, Switzerland.With this consideration in mind, the authors have formulated the problems concerning the continuum theory of liquid crystals into a precise form. In working out the solutions, they have analyzed, systematically and naturally, the techniques and methods of variational calculus. Special attention is dedicated to the analysis of well-posed and ill-posed variational problems. The presence of sub-surface discontinuity in the nematic orientation is analyzed using different techniques. A full chapter is devoted to this aspect of the theory of elasticity of nematic media.

The Graphene Science Handbook is a six-volume set that describes graphene’s special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic cells, and supercapacitors based on graphene) and produced on a massive and global scale.

Volume One: Fabrication Methods

Volume Two: Nanostructure and Atomic Arrangement

Volume Three: Electrical and Optical Properties

Volume Four: Mechanical and Chemical Properties

Volume Five: Size-Dependent Properties

Volume Six: Applications and Industrialization

This handbook describes the fabrication methods of graphene; the nanostructure and atomic arrangement of graphene; graphene’s electrical and optical properties; the mechanical and chemical properties of graphene; the size effects in graphene, characterization, and applications based on size-affected properties; and the application and industrialization of graphene.

Volume one is dedicated to fabrication methods and strategies of graphene and covers:

Various aspects of graphene device process flows Experimental procedures for graphene nanoribbons (GNRs) from graphene Advances in graphene synthesis routes The fabrication of graphene nanoribbons (GNRs) by different methods The synthesis of graphene oxide, its reduction, and its functionalization with organic materials The electrophoretic deposition (EPD) processing of graphene family materials The preparation of graphene using the solvent dispersion method Methods for the preparation of graphene oxide The fabrication and performance of a gate-free graphene pH sensor Advances in wet chemical fabrication of graphene, graphene oxide (GO) and more

In the 2nd edition, fantastic phenomena associated with the interlayer phase coherence in the bilayer system were extensively described. The microscopic theory of the QHE was formulated based on the noncommutative geometry. Furthermore, the unconventional QHE in graphene was reviewed, where the electron dynamics can be treated as relativistic Dirac fermions and even the supersymmetric quantum mechanics plays a key role.

In this 3rd edition, all chapters are carefully reexamined and updated. A highlight is the new chapter on topological insulators. Indeed, the concept of topological insulator stems from the QHE. Other new topics are recent prominent experimental discoveries in the QHE, provided by the experimentalists themselves in Part V. This new edition presents an instructive and comprehensive overview of the QHE. It is also suitable for an introduction to quantum field theory with vividly described applications. Only knowledge of quantum mechanics is assumed. This book is ideal for students and researchers in condensed matter physics, particle physics, theoretical physics and mathematical physics.

This work, of which this is the first volume, aims to provide the means by which this challenge may be met. Starting from the mechanics of deformation, it develops the laws governing macroscopic behaviour – expressed as the constitutive equations – always taking account of the physical phenomena which underlie rheological behaviour. The most recent developments are presented, in particular those concerning

heterogeneous materials such as metallic alloys, polymers and composites. Each chapter is devoted to one of the major classes of material behaviour.

As the subtitles indicate, Volume 1 deals with micro- and macroscopic constitutive behaviour and Volume 2 with damage and fracture mechanics. A third volume will be devoted to exercises and their full solutions complementing the content of these two first volumes.

Most of the chapters end with a set of exercises, to many of which either the full solution or hints on how to obtain this are given; each volume is profusely illustrated with explanatory diagrams and with electron-microscope photographs.

This book, now in its second edition, has been rigorously re-written, updated and modernised for a new generation. The authors improved the existing material, in particular in modifying the organisation, and added new up-to-date content. Understanding the subject matter requires a good knowledge of solid mechanics and materials science; the main elements of these fields are given in a set of annexes at the

end of the first volume. The authors also thought it interesting for the readers to give as footnotes some information about the many scientists whose names are attached to theories and formulae and whose memories must be celebrated.

Whilst the present book, as well as Volume 2, is addressed primarily to graduate students, part of it can be used in undergraduate courses; and it is hoped that practising engineers and scientists will find the information it conveys useful. It is the authors’ hope also that English-speaking readers will want to learn about the aspects of French

culture, and more particularly of the French school of micromechanics of materials, which this treatment undoubtedly displays.

Widely regarded as the standard text in its field, Theory of Simple Liquids gives an advanced but self-contained account of liquid state theory within the unifying framework provided by classical statistical mechanics. The structure of this revised and updated Fourth Edition is similar to that of the previous one but there are significant shifts in emphasis and much new material has been added.

Major changes and Key Features in content include:

Expansion of existing sections on simulation methods, liquid-vapour coexistence, the hierarchical reference theory of criticality, and the dynamics of super-cooled liquids.New sections on binary fluid mixtures, surface tension, wetting, the asymptotic decay of pair correlations, fluids in porous media, the thermodynamics of glasses, and fluid flow at solid surfaces.An entirely new chapter on applications to 'soft matter' of a combination of liquid state theory and coarse graining strategies, with sections on polymer solutions and polymer melts, colloidal dispersions, colloid-polymer mixtures, lyotropic liquid crystals, colloidal dynamics, and on clustering and gelation. Expansion of existing sections on simulation methods, liquid-vapour coexistence, the hierarchian reference of criticality, and the dynamics of super-cooled liquids.New sections on binary fluid mixtures, surface tension, wetting, the asymptotic decay of pair correlations, fluids in porous media, the thermodynamics of glasses, and fluid flow at solid surfaces.An entirely new chapter on applications to 'soft matter' of a combination of liquid state theory and coarse graining strategies, with sections on polymer solutions and polymer melts, colloidal dispersions, colloid-polymer mixtures, lyotropic liquid crystals, colloidal dynamics, and on clustering and gelation.Some of the world’s leading geometers present a treasury of ideas, history, and culture to make the beauty of polyhedra accessible to students, teachers, polyhedra hobbyists, and professionals such as architects and designers, painters and sculptors, biologists and chemists, crystallographers, physicists and earth scientists, engineers and model builders, mathematicians and computer scientists.

The creative chapters by more than 25 authors explore almost every imaginable side of polyhedra. From the beauty of natural forms to the monumental constructions made by man, there is something to fascinate every reader. The book is dedicated to the memory of the legendary geometer H. S. M. Coxeter and the multifaceted design scientist Arthur L. Loeb.

Contributing Authors: P. Ash, T. F. Banchoff, J. Baracs, E. Bolker, C. Chieh, R. Connelly, H.S.M. Coxeter, H. Crapo, E. Demaine, M. Demaine, G. Fleck, B. Grünbaum, I. Hargittai, M. Hargittai, G. Hart, V. Hart, A. Loeb, J. Malkevitch, B. Monson, J. O'Rourke, J. Pedersen, D. Schattschneider, M. Schmitt, E. Schulte, M. Senechal, G.C. Shephard, I. Streinu, M. Walter, M. Wenninger, W. Whiteley, J. M. Wills, and G. M. Ziegler.

–Kenneth S. Schweizer, Morris Professor of Materials Science & Engineering, University of Illinois at Urbana-Champaign (from the Foreword)

This book provides a timely and comprehensive overview of molecular level insights into polymer glasses in confined geometries and under deformation. Polymer glasses have become ubiquitous to our daily life, from the polycarbonate eyeglass lenses on the end of our nose to large acrylic glass panes holding water in aquarium tanks, with advantages over glass in that they are lightweight and easy to manufacture, while remaining transparent and rigid. The contents include an introduction to the field, as well as state of the art investigations. Chapters delve into studies of commonalities across different types of glass formers (polymers, small molecules, colloids, and granular materials), which have enabled microscopic and molecular level frameworks to be developed. The authors show how glass formers are modeled across different systems, thereby leading to treatments for polymer glasses with first-principle based approaches and molecular level detail. Readers across disciplines will benefit from this topical overview summarizing the key areas of polymer glasses, alongside an introduction to the main principles and approaches.