Similar Ebooks
This new edition has been thoroughly revised and updated and has been redesigned to give the book a more contemporary look. As with previous editions it contains numerous examples, references and a series of exercises of increasing difficulty to encourage student understanding. Updates include: Increased coverage of MALDI and ESI, more detailed description of time of flight spectrometers, new material on isotope ratio mass spectrometry, and an expanded range of applications.
Mass Spectrometry, Third Edition is an invaluable resource for all undergraduate and postgraduate students using this technique in departments of chemistry, biochemistry, medicine, pharmacology, agriculture, material science and food science. It is also of interest for researchers looking for an overview of the latest techniques and developments.
Reviews of the First Edition
“For anyone wishing to know what really goes on in their NMR experiments, I would highly recommend this book” – Chemistry World
“…I warmly recommend for budding NMR spectroscopists, or others who wish to deepen their understanding of elementary NMR theory or theoretical tools” – Magnetic Resonance in Chemistry
This book guides the reader through the mathematics, physics and practical techniques needed to use telescopes (from small amateur models to the larger instruments installed in many colleges) and to observe objects in the sky. Mathematics to around Advanced Placement standard (US) or A level (UK) is assumed, although High School Diploma (US) or GCSE-level (UK) mathematics plus some basic trigonometry will suffice most of the time. Most of the physics and engineering involved is described fully and requires no prior knowledge or experience.
This is a ‘how to’ book that provides the knowledge and background required to understand how and why telescopes work. Equipped with the techniques discussed in this book, the observer will be able to operate with confidence his or her telescope and to optimize its performance for a particular purpose. In principle the observer could calculate his or her own predictions of planetary positions (ephemerides), but more realistically the observer will be able to understand the published data lists properly instead of just treating them as ‘recipes.’ When the observer has obtained measurements, he/she will be able to analyze them in a scientific manner and to understand the significance and meaning of the results.
“Telescopes and Techniques, 3rd Edition” fills a niche at the start of an undergraduate astronomer’s university studies, as shown by it having been widely adopted as a set textbook. This third edition is now needed to update its material with the many new observing developments and study areas that have come into prominence since it was published. The book concentrates on the knowledge needed to understand how small(ish) optical telescopes function, their main designs and how to set them up, plus introducing the reader to the many ways in which objects in the sky change their positions and how they may be observed. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the most advanced topics of photometry and spectroscopy are included, but mainly to enable the reader to see some of the developments possible from the basic observing techniques covered in the main parts of the book.
Organic Structures from Spectra, Fifth Edition is a carefully chosen set of more than 280 structural problems employing the major modern spectroscopic techniques, a selection of 27 problems using 2D-NMR spectroscopy, more than 20 problems specifically dealing with the interpretation of spin-spin coupling in proton NMR spectra and 8 problems based on the quantitative analysis of mixtures using proton and carbon NMR spectroscopy. All of the problems are graded to develop and consolidate the student’s understanding of organic spectroscopy. The accompanying text is descriptive and only explains the underlying theory at a level which is sufficient to tackle the problems. The text includes condensed tables of characteristic spectral properties covering the frequently encountered functional groups.
The examples themselves have been selected to include all important common structural features found in organic compounds and to emphasise connectivity arguments. Many of the compounds were synthesised specifically for this purpose. There are many more easy problems, to build confidence and demonstrate basic principles, than in other collections.
The fifth edition of this popular textbook:
• includes more than 250 new spectra and more than 25 completely new problems;
• now incorporates an expanded suite of new problems dealing with the analysis of 2D NMR spectra (COSY, C H Correlation spectroscopy, HMBC, NOESY and TOCSY);
• has been expanded and updated to reflect the new developments in NMR and to retire older techniques that are no longer in common use;
• provides a set of problems dealing specifically with the quantitative analysis of mixtures using NMR spectroscopy;
• features proton NMR spectra obtained at 200, 400 and 600 MHz and 13C NMR spectra include DEPT experiments as well as proton-coupled experiments;
• contains 6 problems in the style of the experimental section of a research paper and two examples of fully worked solutions.
Organic Structures from Spectra, Fifth Edition will prove invaluable for students of Chemistry, Pharmacy and Biochemistry taking a first course in Organic Chemistry.
Contents
Preface
Introduction
Ultraviolet Spectroscopy
Infrared Spectroscopy
Mass Spectrometry
Nuclear Magnetic Resonance Spectroscopy
2DNMR
Problems
Index
Reviews from earlier editions
“Your book is becoming one of the “go to” books for teaching structure determination here in the States. Great work!”
“…I would definitely state that this book is the most useful aid to basic organic spectroscopy teaching in existence and I would strongly recommend every instructor in this area to use it either as a source of examples or as a class textbook”.
Magnetic Resonance in Chemistry
“Over the past year I have trained many students using problems in your book - they initially find it as a task. But after doing 3-4 problems with all their brains activities... working out the rest of the problems become a mania. They get addicted to the problem solving and every time they solve a problem by themselves, their confident level also increases.”
“I am teaching the fundamentals of Molecular Spectroscopy and your books represent excellent sources of spectroscopic problems for students.”
This workbook:
Features exercises to help develop the student's understanding of how structures are determined from spectra and to promote the student's own interpretation of different spectra. Covers a large range of spectroscopic data, including mass spectrometry, infrared and 1H and 13C nuclear magnetic resonance, typically used in the routine analysis of small-sized organic molecules. Presents in full-color, in a workbook-friendly format the spectra for interpretation with explanations and analyses on the facing page.Related to the workbook the authors have an online resource of the problems featured in the workbook, available at: htttp://spectros.unice.fr/ By using the print edition alongside the online spectra, students will be able to enhance their understanding of the interpretation of multiple spectra.
Students in the physical and life sciences, and in engineering, need to know about the physics and biology of light. Recently, it has become increasingly clear that an understanding of the quantum nature of light is essential, both for the latest imaging technologies and to advance our knowledge of fundamental life processes, such as photosynthesis and human vision. From Photon to Neuron provides undergraduates with an accessible introduction to the physics of light and offers a unified view of a broad range of optical and biological phenomena. Along the way, this richly illustrated textbook builds the necessary background in neuroscience, photochemistry, and other disciplines, with applications to optogenetics, superresolution microscopy, the single-photon response of individual photoreceptor cells, and more.
With its integrated approach, From Photon to Neuron can be used as the basis for interdisciplinary courses in physics, biophysics, sensory neuroscience, biophotonics, bioengineering, or nanotechnology. The goal is always for students to gain the fluency needed to derive every result for themselves, so the book includes a wealth of exercises, including many that guide students to create computer-based solutions. Supplementary online materials include real experimental data to use with the exercises.
Assumes familiarity with first-year undergraduate physics and the corresponding math Overlaps the goals of the MCAT, which now includes data-based and statistical reasoning Advanced chapters and sections also make the book suitable for graduate courses An Instructor's Guide and illustration package is available to professors* The first reference work on named reactions to present colored schemes for easier understanding
* 250 frequently used named reactions are presented in a convenient two-page layout with numerous examples
* An opening list of abbreviations includes both structures and chemical names
* Contains more than 10,000 references grouped by seminal papers, reviews, modifications, and theoretical works
* Appendices list reactions in order of discovery, group by contemporary usage, and provide additional study tools
* Extensive index quickly locates information using words found in text and drawings
In the expanded second edition of Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy, the authors include new research, editorials, supplements, and molecular structural formulas, along with updated references and information on NIR spectra. The thoroughly updated and revised second edition offers a full library of color spectra in a larger format to ensure clarity and reader comprehension.
Providing a rich set of reference information required to interpret NIR spectra for research and industrial applications, this book:
Offers more than 300 figures representing all the major functional groups and their NIR frequency ranges Contains over 120 pages of tables and charts illustrating overlapping spectra Covers NIR spectra for organic compounds, including alkanes, carboxylic acids, amines, dienes, alkynes, heterocyclic compounds, amino acids, and aldehydes Provides comprehensive appendices with spectra-structure correlations, example spectra, and other useful data for interpreting NIR spectra
The book assumes only a basic knowledge of complex numbers and matrices, and provides the reader with numerous worked examples and exercises to encourage understanding. With the explicit aim of carefully developing the subject from the beginning, the text starts with coverage of quarks and nucleons and progresses through to a detailed explanation of several important NMR experiments, including NMR imaging, COSY, NOESY and TROSY.
Completely revised and updated, the Second Edition features new material on the properties and distributions of isotopes, chemical shift anisotropy and quadrupolar interactions, Pake patterns, spin echoes, slice selection in NMR imaging, and a complete new chapter on the NMR spectroscopy of quadrupolar nuclei. New appendices have been included on Euler angles, and coherence selection by field gradients. As in the first edition, all material is heavily supported by graphics, much of which is new to this edition.
Written for undergraduates and postgraduate students taking a first course in NMR spectroscopy and for those needing an up-to-date account of the subject, this multi-disciplinary book will appeal to chemical, physical, material, life, medical, earth and environmental scientists. The detailed physical insights will also make the book of interest for experienced spectroscopists and NMR researchers.
• An accessible and carefully written introduction, designed to help students to fully understand this complex and dynamic subject
• Takes a multi-disciplinary approach, focusing on basic principles and concepts rather than the more practical aspects
• Presents a strong pedagogical approach throughout, with emphasis placed on individual spins to aid understanding
• Includes numerous worked examples, problems, further reading and additional notes
Praise from the reviews of the First Edition:
"This is an excellent book... that many teachers of NMR spectroscopy will cherish... It deserves to be a ‘classic’ among NMR spectroscopy texts." NMR IN BIOMEDICINE
"I strongly recommend this book to everyone…it is probably the best modern comprehensive description of the subject." ANGEWANDTE CHEMIE, INTERNATIONAL EDITION
important for determining the 3D-structure of molecules.
This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.
Dried blood spot (DBS) sampling involves the collection of a small volume of blood, via a simple prick or other means, from a study subject onto a cellulose or polymer paper card, which is followed by drying and transfer to the laboratory for analysis. For many years, this method of blood sample collection has been extensively utilized in some important areas of human healthcare (for example, newborn screening for inherited metabolic disorders and HIV-related epidemiological studies). Because of its advantages over conventional blood, plasma, or serum sample collection, DBS sampling has been valued by the pharmaceutical industry in drug research and development.
Dried Blood Spots: Applications and Techniques features contributions from an international team of leading scientists in the field. Their contributions present a unique resource on the history, principles, procedures, methodologies, applications, and emerging technologies related to DBS.
Presented in three parts, the book thoroughly examines:
Applications of DBS sampling and associated procedures and methodologies in various human healthcare studies Applications and perspectives of DBS sampling in drug research and development, and therapeutic drug monitoring New technologies and emerging applications related to DBS sampling and analysisDried Blood Spots: Applications and Techniques is a valuable working guide for researchers, professionals, and students in healthcare, medical science, diagnostics, clinical chemistry, and pharmaceuticals, etc.
New to the third edition:
New chapter: Emerging ICP-MS Application Areas – covers the three most rapidly growing areas: analysis of flue gas desulfurization wastewaters, fully automated analysis of seawater samples using online chemistry procedures, and characterization of engineered nanoparticles Discussion of all the new technology commercialized since the second edition. An updated glossary of terms with more than 100 new entries Examination of nonstandard sampling accessories, which are important for enhancing the practical capabilities of ICP-MS Insight into additional applications in the environmental, clinical/biomedical, and food chemistry fields as well as new directives from the United States Pharmacopeia (USP) on determining impurities in pharmaceuticals and dietary supplements using Chapters , and Description of the most important analytical factors for selecting an ICP-MS system, taking into consideration more recent application demands
This reference describes the principles and application benefits of ICP-MS in a clear manner for laboratory managers, analytical chemists, and technicians who have limited knowledge of the technique. In addition, it offers much-needed guidance on how best to evaluate capabilities and compare with other trace element techniques when looking to purchase commercial ICP-MS instrumentation.
Compared to conventional Raman microscopy, coherent Raman scattering (CRS) allows label-free imaging of living cells and tissues at video rate by enhancing the weak Raman signal through nonlinear excitation. Edited by pioneers in the field and with contributions from a distinguished team of experts, Coherent Raman Scattering Microscopy explains how CRS can be used to obtain a point-by-point chemical map of live cells and tissues.
In color throughout, the book starts by establishing the foundation of CRS microscopy. It discusses the principles of nonlinear optical spectroscopy, particularly coherent Raman spectroscopy, and presents the theories of contrast mechanisms pertinent to CRS microscopy. The text then provides important technical aspects of CRS microscopy, including microscope construction, detection schemes, and data analyses. It concludes with a survey of applications that demonstrate how CRS microscopy has become a valuable tool in biomedicine.
Due to its label-free, noninvasive examinations of living cells and organisms, CRS microscopy has opened up exciting prospects in biology and medicine—from the mapping of 3D distributions of small drug molecules to identifying tumors in tissues. An in-depth exploration of the theories, technology, and applications, this book shows how CRS microscopy has impacted human health and will deepen our understanding of life processes in the future.
The application of multidimensional solid-state NMR inevitably involves use of concepts from different fields of science. This book also provides the first comprehensive treatment of both the new experimental techniques and the theoretical concepts needed in more complex data analysis. The text addresses spectroscopists and polymer scientists by treating the subject on different levels; descriptive, technical, and mathematical approaches are used when appropriate. It presents an overview of new developments with numerous experimental examples and illustrations, which will appeal to readers interested in both the information content as well as the potential of solid-state NMR. The book also contains many previously unpublished details that will be appreciated by those who want to perform the experiments. The techniques described are applicable not only to the study of synthetic polymers but to numerous problems in solid-state physics, chemistry, materials science, and biophysics.Presents original theories and new perspectives on scattering techniquesProvides a systematic treatment of the whole subjectGives readers access to previously unpublished materialIncludes extensive illustrations
Beginning with simple theoretical models and experimental techniques, the book develops the complete repertoire of theoretical principles and experimental techniques necessary for understanding and implementing the most sophisticated NMR experiments.
Important new techniques and applications of NMR spectroscopy have emerged since the first edition of this extremely successful book was published in 1996. This updated version includes new sections describing measurement and use of residual dipolar coupling constants for structure determination, TROSY and deuterium labeling for application to large macromolecules, and experimental techniques for characterizing conformational dynamics. In addition, the treatments of instrumentation and signal acquisition, field gradients, multidimensional spectroscopy, and structure calculation are updated and enhanced.
The book is written as a graduate-level textbook and will be of interest to biochemists, chemists, biophysicists, and structural biologists who utilize NMR spectroscopy or wish to understand the latest developments in this field.
Provides an understanding of the theoretical principles important for biological NMR spectroscopyDemonstrates how to implement, optimize and troubleshoot modern multi-dimensional NMR experimentsAllows for the capability of designing effective experimental protocols for investigations of protein structures and dynamicsIncludes a comprehensive set of example NMR spectra of ubiquitin provides a reference for validation of experimental methods"...this is an excellent book which is both instructive and amusing to read. Its true value is neatly summarised in one of the closing sentences: 'We have supplied you with the guidelines and criteria which you can now apply when considering supercritical fluids for your own needs.'' - Chemistry in Britain, February 1995
*Completely revised and updated throughout
*The definative guide for process engineers and designers
*Covers a complete range of basic day-to-day operation topics
Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
On the threshold of the new millennium when plasma emission and mass spectrometry are so important and popular, the editor considered it timely to produce a book which covers all present atomic detectors and techniques where FA has been or can be advantageously employed. The book has been conceived in three separate parts: Part I gives the fundamental, instrumentation and potential of FIA as a most versatile sample presentation/introduction system for atomic spectrometry. Part II provides a modern account of fundamentals, possibilities and applications offered by flow analysis to atomic spectrometry for on-line sample pretreatments, separations and preconcentrations. Part III deals with applications of FA-ASD combinations to analytical problem-solving in most varied fields and situations.
This monograph integrates the most popular aspects of FIA, its new developments for sample on-line treatments and on-line non-chromatographic and chromatographic separations (all typical 'flow analysis') in connection with all branches of analytical atomic spectrometry. Thus, academics, researchers and routine users of analytical atomic spectrometry will find this book invaluable.
Fully revised and expanded by 30%, X-Ray Fluorescence Spectrometry, Second Edition incorporates the latest industrial and scientific trends in all areas. It updates all previous material and adds new chapters on such topics as the history of X-ray fluorescence spectroscopy, the design of X-ray spectrometers, state-of-the-art applications, and X-ray spectra.
Ron Jenkins draws on his extensive experience in training and consulting industry professionals for this clear and concise treatment, covering first the basic aspects of X rays, then the methodology of X-ray fluorescence spectroscopy and available instrumentation. He offers a comparison between wavelength and energy dispersive spectrometers as well as step-by-step guidelines to X-ray spectrometric techniques for qualitative and quantitative analysis-from specimen preparation to real-world industrial application.
Favored by the American Chemical Society and the International Centre for Diffraction Data, X-Ray Fluorescence Spectrometry, Second Edition is an ideal introduction for newcomers to the field and an invaluable reference for experienced spectroscopists-in chemical analysis, geology, metallurgy, and materials science.
An up-to-date review of X-ray spectroscopic techniques. This proven guidebook for industry professionals is thoroughly updated and expanded to reflect advances in X-ray analysis over the last decade. X-Ray Fluorescence Spectrometry, Second Edition includes:
* The history of X-ray fluorescence spectrometry-new to this edition.
* A critical review of the most useful X-ray spectrometers.
* Techniques and procedures for quantitative and qualitative analysis.
* Modern applications and industrial trends.
* X-ray spectra-new to this edition.
Principle, experimental set ups, parameters and interpretation rules of several advanced IR-based techniques; application to biointerface characterisation through the presentation of recent examples, will be given in this book. It will describe how to characterise amino acids, protein or bacterial strain interactions with metal and oxide surfaces, by using infrared spectroscopy, in vacuum, in the air or in an aqueous medium. Results will highlight the performances and perspectives of the technique.
Description of the principles, expermental setups and parameter interpretation, and the theory for several advanced IR-based techniques for interface characterisationContains examples which demonstrate the capacity, potential and limits of the IR techniquesHelps finding the most adequate mode of analysisContains examplesContains a glossary by techniques and by keywordsThis book is an easy-to-use compendium of problems encountered when using various commonly used analytical techniques. Emphasis is on impurities, by-products, contaminants and other artifacts. A separate entry is provided for each artifact. For specific chemicals, this entry provides the common name, mass spectrum, gas chromatographic data, CAS name and registry number, synonyms and a narrative discussion. More than 1100 entries are included. Mass spectral data are indexed in a 6-peak index (molecular ion, base peak, second peak, third peak) and there are also formula, author and subject indexes. An extensive bibliography contains complete literature citations.
The book is designed to be used. It will not only allow experienced analysts to profit from the mistakes of others, but it will also be invaluable to other scientists who use analytical instruments in their work.
A discussion is then presented on carbon-13 NMR, detailing its pros and cons and showing how it can be used in conjunction with proton NMR via the pivotal 2-D techniques (HSQC and HMBC) to yield vital structural information. Some of the more specialist techniques available are then discussed, i.e. flow NMR, solvent suppression, Magic Angle Spinning, etc. Other important nuclei are then discussed and useful data supplied. This is followed by a discussion of the neglected use of NMR as a tool for quantification and new techniques for this explained. The book then considers the safety aspects of NMR spectroscopy, reviewing NMR software for spectral prediction and data handling and concludes with a set of worked Q&As.
Emerging topics in the field of dissolution are also discussed, including biorelevant and biphasic dissolution, the use on enzymes in dissolution testing, dissolution of suspensions, and drug release of non-oral products. Of particular interest to the industrial pharmaceutical professional, a brief overview of the formulation and solubilization techniques employed in the development of BCS class 2 and 4 drugs to overcome solubility challenges is provided and is complemented by a collection of chapters that survey the approaches and considerations in developing dissolution methodologies for enabling drug delivery technologies, including nanosuspensions, lipid-based formulations, and stabilized amorphous drug formulations.
Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Medical Applications of Mass Spectrometry addresses the key issues in the medical applications of mass spectrometry at the level appropriate for the intended readership. It will go a long way to help the utilization of mass spectrometry in medicine.
The book comprises five parts. A general overview is followed by a description of the basic sampling and separation methods in analytical chemistry. In the second part a solid foundation in mass spectrometry and modern techniques of data analysis is presented. The third part explains how mass spectrometry is used in exploring various classes of biomolecules, including proteins and lipids. In the fourth section mass spectrometry is introduced as a diagnostic tool in clinical treatment, infectious pathogen research, neonatal diagnostics, cancer, brain and allergy research, as well as in various fields of medicine: cardiology, pulmonology, neurology, psychiatric diseases, hemato-oncology, urologic diseases, gastrointestinal diseases, gynecology and pediatrics. The fifth part covers emerging applications in biomarker discovery and in mass spectrometric imaging.
* Provides a broad look at how the medical field is benefiting from advances in mass spectrometry.
* Guides the reader from basic principles and methods to cutting edge applications.
* There is NO comparable book on the market to fill this fast growing field.
This is presented in a concise yet comprehensive manner and each section is prepared such that they can be read independently of each other, and all equations are presented using the most commonly used units. Greater emphasis has been placed on spectral understanding/interpretation. For completeness sake, a description of commonly used instrumentation is also presented. Finally, some complementary surface analytical techniques and associated concepts are reviewed for comparative purposes in stand-alone appendix sections.
This volume is comprised of 10 chapters and begins with a brief history of indicators, including the contribution of Robert Boyle in the field. The different kinds of indicators are also described, along with developments in indicators in the nineteenth century. The next chapter deals with the theory and principles of visual indicators, followed by a discussion on acid-base indicators such as organic dyes, inorganic substances, compounds capable of fluorescence, and chemiluminescent systems. Subsequent chapters explore other varieties of indicators, including indicators for non-aqueous acid-base titrations, metallochromic indicators, and adsorption indicators, as well as oxidation-reduction indicators and fluorescent and chemiluminescent indicators.
This book will be of interest to chemists.
Each chapter provides a discussion of the fundamental principles underlying the techniques, descriptions of the instrumentation, and numerous applications. The chapters also contain updated bibliographies and problems, and most have suggested experiments appropriate to the techniques. This completely revised and updated edition covers subjects in more detail, such as a completely revised x-ray chapter, expanded coverage of electroanalytical techniques, and expansion of chromatography and mass spectrometry topics to reflect the predominance of these instruments in laboratories. This includes state-of-the-art sample introduction and mass analyzers, and the latest developments in UPLC and hyphenated techniques. The book also contains new graphics and addresses several new topics:
Ion mobility spectrometry Time domain NMR (relaxometry) Electron spin resonance spectroscopy (ESR, EPR) Forensic science and bioanalytical applications Microcalorimetry and optical thermal instruments Laser-induced breakdown spectroscopy (LIBS)
This text uniquely combines instrumental analysis with organic spectral interpretation (IR, NMR, and MS). It provides detailed coverage of sampling, sample handling, sample storage, and sample preparation. In addition, the authors have included many instrument manufacturers’ websites, which contain extensive resources.
The section regarding GC Conditions, Derivatization, and Mass Spectral Interpretation of Specific Compound Types has the same number of compound types as the original edition, but the information in each section has been expanded to not only explain some of the spectra but to also explain why certain fragmentations take place. The number of Appendices has been increased from 12 to 17. The Appendix on Atomic Masses and Isotope Abundances has been expanded to provide tools to aid in determination of elemental composition from isotope peak intensity ratios. An appendix with examples on "Steps to follow in the determination of elemental compositions based on isotope peak intensities" has been added. Appendices on whether to use GC/MS or LC/MS, third-party software for use in data analysis, list of information required in reporting GC/MS data, X+1 and X+2 peak relative intensities based on the number of atoms of carbon in an ion, and list of available EI mass spectral databases have been added. Others such as the ones on derivatization, isotope peak patterns for ions with Cl and/or Br, terms used in GC and in mass spectrometry, and tips on setting up, maintaining and troubleshooting a GC/MS system have all been expanded and updated.
Covers the practical instruction necessary for successful operation of GC/MS equipmentReviews the latest advances in instrumentation, ionization methods, and quantitationIncludes troubleshooting techniques and a variety of additional information useful for the GC/MS practitionerA true benchtop referenceA guide to a basic understanding of the components of a Gas Chromatograph-Mass Spectrometer (GC-MS)Quick References to data interpretationReady source for information on new analysesImportant Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Complementing the authors' first book, Analytical Method Validation and Instrument Performance Verification, this new volume provides coverage of more advanced topics, focusing on additional and supplemental methods, instruments, and electronic systems that are used in pharmaceutical, biopharmaceutical, and clinical testing. Readers will gain new and valuable insights that enable them to avoid common pitfalls in order to seamlessly conduct analytical method validation as well as instrument operation qualification and performance verification.
Part 1, Method Validation, begins with an overview of the book's risk-based approach to phase appropriate validation and instrument qualification; it then focuses on the strategies and requirements for early phase drug development, including validation of specific techniques and functions such as process analytical technology, cleaning validation, and validation of laboratory information management systems
Part 2, Instrument Performance Verification, explores the underlying principles and techniques for verifying instrument performance—coverage includes analytical instruments that are increasingly important to the pharmaceutical industry, such as NIR spectrometers and particle size analyzers—and offers readers a variety of alternative approaches for the successful verification of instrument performance based on the needs of their labs
At the end of each chapter, the authors examine important practical problems and share their solutions. All the methods covered in this book follow Good Analytical Practices (GAP) to ensure that reliable data are generated in compliance with current Good Manufacturing Practices (cGMP).
Analysts, scientists, engineers, technologists, and technical managers should turn to this book to ensure that analytical methods and instruments are accurate and meet GMP standards and requirements.
• Helps readers understand amorphous solid dispersions and apply techniques to particular pharmaceutical systems
• Covers physical and chemical properties, screening, scale-up, formulation, drug product manufacture, intellectual property, and regulatory considerations
• Has an appendix with structure and property information for polymers commonly used in drug development and with marketed drugs developed using the amorphous sold dispersion approach
• Addresses global regulatory issues including USA regulations, ICH guidelines, and patent concerns around the world
Beginning with an overview of metals and selected nonmetals in biology, the book then discusses the following concepts: basic coordination chemistry for biologists; structural and molecular biology for chemists; biological ligands for metal ions; intermediary metabolism and bioenergetics; and methods to study metals in biological systems.
The book also covers metal assimilation pathways; transport, storage, and homeostasis of metal ions; sodium and potassium channels and pumps; magnesium phosphate metabolism and photoreceptors; calcium and cellular signaling; the catalytic role of several classes of mononuclear zinc enzymes; the biological chemistry of iron; and copper chemistry and biochemistry. In addition, the book discusses nickel and cobalt enzymes; manganese chemistry and biochemistry; molybdenum, tungsten, vanadium, and chromium; non-metals in biology; biomineralization; metals in the brain; metals and neurodegeneration; metals in medicine and metals as drugs; and metals in the environment.Winner of a 2013 Textbook Excellence Awards (Texty) from the Text and Academic Authors AssociationReadable style, complemented by anecdotes and footnotesEnables the reader to more readily grasp the biological and clinical relevance of the subjectColor illustrations enable easy visualization of molecular mechanisms