## Similar Ebooks

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials ForDummies. Now students who are prepping for exams, preparing tostudy new material, or who just need a refresher can have aconcise, easy-to-understand review guide that covers an entirecourse by concentrating solely on the most important concepts. Fromalgebra and chemistry to grammar and Spanish, our expert authorsfocus on the skills students most need to succeed in a subject.

Slay the calculus monster with this user-friendly guide

Calculus For Dummies, 2nd Edition makes calculus manageable—even if you're one of the many students who sweat at the thought of it. By breaking down differentiation and integration into digestible concepts, this guide helps you build a stronger foundation with a solid understanding of the big ideas at work. This user-friendly math book leads you step-by-step through each concept, operation, and solution, explaining the "how" and "why" in plain English instead of math-speak. Through relevant instruction and practical examples, you'll soon learn that real-life calculus isn't nearly the monster it's made out to be.

Calculus is a required course for many college majors, and for students without a strong math foundation, it can be a real barrier to graduation. Breaking that barrier down means recognizing calculus for what it is—simply a tool for studying the ways in which variables interact. It's the logical extension of the algebra, geometry, and trigonometry you've already taken, and Calculus For Dummies, 2nd Edition proves that if you can master those classes, you can tackle calculus and win.

Includes foundations in algebra, trigonometry, and pre-calculus conceptsExplores sequences, series, and graphing common functionsInstructs you how to approximate area with integrationFeatures things to remember, things to forget, and things you can't get away withStop fearing calculus, and learn to embrace the challenge. With this comprehensive study guide, you'll gain the skills and confidence that make all the difference. Calculus For Dummies, 2nd Edition provides a roadmap for success, and the backup you need to get there.

1001 Calculus Practice Problems For Dummies takes youbeyond the instruction and guidance offered in Calculus ForDummies, giving you 1001 opportunities to practice solvingproblems from the major topics in your calculus course. Plus, anonline component provides you with a collection of calculusproblems presented in multiple-choice format to further help youtest your skills as you go.

Gives you a chance to practice and reinforce the skills youlearn in your calculus courseHelps you refine your understanding of calculusPractice problems with answer explanations that detail everystep of every problemThe practice problems in 1001 Calculus Practice Problems ForDummies range in areas of difficulty and style, providing youwith the practice help you need to score high at exam time.

A self-contained text, it presents the necessary background on the limit concept, and the first seven chapters could constitute a one-semester introduction to limits. Subsequent chapters discuss differential calculus of the real line, the Riemann-Stieltjes integral, sequences and series of functions, transcendental functions, inner product spaces and Fourier series, normed linear spaces and the Riesz representation theorem, and the Lebesgue integral. Supplementary materials include an appendix on vector spaces and more than 750 exercises of varying degrees of difficulty. Hints and solutions to selected exercises, indicated by an asterisk, appear at the back of the book.

An Introduction to Numerical Methods and Analysis, SecondEdition reflects the latest trends in the field, includesnew material and revised exercises, and offers a unique emphasis onapplications. The author clearly explains how to both construct andevaluate approximations for accuracy and performance, which are keyskills in a variety of fields. A wide range of higher-level methodsand solutions, including new topics such as the roots ofpolynomials, spectral collocation, finite element ideas, andClenshaw-Curtis quadrature, are presented from an introductoryperspective, and theSecond Edition also features:ulstyle="line-height: 25px; margin-left: 15px; margin-top: 0px; font-family: Arial; font-size: 13px;"Chapters and sections that begin with basic, elementarymaterial followed by gradual coverage of more advancedmaterialExercises ranging from simple hand computations to challengingderivations and minor proofs to programming exercisesWidespread exposure and utilization of MATLAB®An appendix that contains proofs of various theorems and othermaterial

Embedded & searchable equations, figures & tables

Math XML

Index with linked pages numbers for easy reference

Redrawn full color figures to allow for easier identification

Elementary Differential Equations and Boundary Value Problems 11e, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students.

The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal twoï¿1?2 or threeï¿1?2 semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.

The book is divided into three parts and begins with the basics: models, probability, Bayes’ rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment.

This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business.

Accessible, including the basics of essential concepts of probability and random samplingExamples with R programming language and JAGS softwareComprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis)Coverage of experiment planningR and JAGS computer programming code on websiteExercises have explicit purposes and guidelines for accomplishmentProvides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs

"This is quite a well-done book: very tightly organized,better-than-average exposition, and numerous examples,illustrations, and applications."

—Mathematical Reviews of the American MathematicalSociety

An Introduction to Linear Programming and Game Theory, ThirdEdition presents a rigorous, yet accessible, introduction tothe theoretical concepts and computational techniques of linearprogramming and game theory. Now with more extensive modelingexercises and detailed integer programming examples, this bookuniquely illustrates how mathematics can be used in real-worldapplications in the social, life, and managerial sciences,providing readers with the opportunity to develop and apply theiranalytical abilities when solving realistic problems.

This Third Edition addresses various new topics and improvementsin the field of mathematical programming, and it also presents twosoftware programs, LP Assistant and the Solver add-in for MicrosoftOffice Excel, for solving linear programming problems. LPAssistant, developed by coauthor Gerard Keough, allows readers toperform the basic steps of the algorithms provided in the book andis freely available via the book's related Web site. The use of thesensitivity analysis report and integer programming algorithm fromthe Solver add-in for Microsoft Office Excel is introduced soreaders can solve the book's linear and integer programmingproblems. A detailed appendix contains instructions for the use ofboth applications.

Additional features of the Third Edition include:

A discussion of sensitivity analysis for the two-variableproblem, along with new examples demonstrating integer programming,non-linear programming, and make vs. buy modelsRevised proofs and a discussion on the relevance and solution ofthe dual problem

A section on developing an example in Data EnvelopmentAnalysis

An outline of the proof of John Nash's theorem on the existenceof equilibrium strategy pairs for non-cooperative, non-zero-sumgames

Providing a complete mathematical development of all presentedconcepts and examples, Introduction to Linear Programming andGame Theory, Third Edition is an ideal text for linearprogramming and mathematical modeling courses at theupper-undergraduate and graduate levels. It also serves as avaluable reference for professionals who use game theory inbusiness, economics, and management science.

Calculus II is a prerequisite for many popular college majors,including pre-med, engineering, and physics. Calculus II ForDummies offers expert instruction, advice, and tips to helpsecond semester calculus students get a handle on the subject andace their exams.

It covers intermediate calculus topics in plain English,featuring in-depth coverage of integration, including substitution,integration techniques and when to use them, approximateintegration, and improper integrals. This hands-on guide alsocovers sequences and series, with introductions to multivariablecalculus, differential equations, and numerical analysis. Best ofall, it includes practical exercises designed to simplify andenhance understanding of this complex subject.

Introduction to integrationIndefinite integralsIntermediate Integration topicsInfinite seriesAdvanced topicsPractice exercisesConfounded by curves? Perplexed by polynomials? Thisplain-English guide to Calculus II will set you straight!

Bayesian statistical methods are becoming more common and more important, but not many resources are available to help beginners. Based on undergraduate classes taught by author Allen Downey, this book’s computational approach helps you get a solid start.

Use your existing programming skills to learn and understand Bayesian statisticsWork with problems involving estimation, prediction, decision analysis, evidence, and hypothesis testingGet started with simple examples, using coins, M&Ms, Dungeons & Dragons dice, paintball, and hockeyLearn computational methods for solving real-world problems, such as interpreting SAT scores, simulating kidney tumors, and modeling the human microbiome.Many of the fundamental laws of physics, chemistry, biology, andeconomics can be formulated as differential equations. Thisplain-English guide explores the many applications of thismathematical tool and shows how differential equations can help usunderstand the world around us. Differential Equations ForDummies is the perfect companion for a college differentialequations course and is an ideal supplemental resource for othercalculus classes as well as science and engineering courses. Itoffers step-by-step techniques, practical tips, numerous exercises,and clear, concise examples to help readers improve theirdifferential equation-solving skills and boost their testscores.

The "lost notebook" contains considerable material on mock theta functions and so undoubtedly emanates from the last year of Ramanujan's life. It should be emphasized that the material on mock theta functions is perhaps Ramanujan's deepest work. Mathematicians are probably several decades away from a complete understanding of those functions. More than half of the material in the book is on q-series, including mock theta functions; the remaining part deals with theta function identities, modular equations, incomplete elliptic integrals of the first kind and other integrals of theta functions, Eisenstein series, particular values of theta functions, the Rogers-Ramanujan continued fraction, other q-continued fractions, other integrals, and parts of Hecke's theory of modular forms.

Does the thought of calculus give you a coronary? You aren'talone. Thankfully, this new edition of Calculus Workbook ForDummies makes it infinitely easier. Focusing "beyond theclassroom," it contains calculus exercises you can work on thatwill help to increase your confidence and improve your skills. Thishands-on, friendly guide gives you hundreds of practice problems onlimits, vectors, continuity, differentiation, integration,curve-sketching, conic sections, natural logarithms, and infiniteseries.

Calculus is a gateway and potential stumbling block for studentsinterested in pursuing a career in math, science, engineering,finance, and technology. Calculus students, along with mathstudents in nearly all disciplines, benefit greatly fromopportunities to practice different types of problems—in theclassroom and out. Calculus Workbook For Dummies takes youstep-by-step through each concept, operation, and solution,explaining the "how" and "why" in plain English, rather thanmath-speak. Through relevant instruction and practical examples,you'll soon learn that real-life calculus isn't nearly the monsterit's made out to be.

Master differentiation and integrationUse the calculus microscope: limitsAnalyze common functionsScore your highest in calculusComplete with tips for problem-solving and traps to avoid,Calculus Workbook For Dummies is your sure-fire weapon forconquering calculus!

The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

Review from the first edition:

"This book is intended for the student who has a good, but naïve, understanding of elementary calculus and now wishes to gain a thorough understanding of a few basic concepts in analysis.... The author has tried to write in an informal but precise style, stressing motivation and methods of proof, and ... has succeeded admirably."

—MATHEMATICAL REVIEWS

The main focus is on manifolds in Euclidean space and the metric properties they inherit from it. Among the topics discussed are curvature and how it affects the shape of space, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.

Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Time and again, where Yau has gone, physics has followed. Now for the first time, readers will follow Yau’s penetrating thinking on where we’ve been, and where mathematics will take us next. A fascinating exploration of a world we are only just beginning to grasp, The Shape of Inner Space will change the way we consider the universe on both its grandest and smallest scales.

Comprised of 18 chapters, this book begins with a review of some basic pre-calculus algebra and analytic geometry, paying particular attention to functions and graphs. The reader is then introduced to derivatives and applications of differentiation; exponential and trigonometric functions; and techniques and applications of integration. Subsequent chapters deal with inverse functions, plane analytic geometry, and approximation as well as convergence, and power series. In addition, the book considers space geometry and vectors; vector functions and curves; higher partials and applications; and double and multiple integrals.

This monograph will be a useful resource for undergraduate students of mathematics and algebra.

Chapter headings include:

l. Introduction

2. Interpolation with Divided Differences

3. Lagrangian Methods

4. Finite-Difference Interpolation

5. Operations with Finite Differences

6. Numerical Solution of Differential Equations

7. Least-Squares Polynomial Approximation

In this revised and updated second edition, Professor Hildebrand (Emeritus, Mathematics, MIT) made a special effort to include more recent significant developments in the field, increasing the focus on concepts and procedures associated with computers. This new material includes discussions of machine errors and recursive calculation, increased emphasis on the midpoint rule and the consideration of Romberg integration and the classical Filon integration; a modified treatment of prediction-correction methods and the addition of Hamming's method, and numerous other important topics.

In addition, reference lists have been expanded and updated, and more than 150 new problems have been added. Widely considered the classic book in the field, Hildebrand's Introduction to Numerical Analysis is aimed at advanced undergraduate and graduate students, or the general reader in search of a strong, clear introduction to the theory and analysis of numbers.

Richard Courant's classic text Differential and Integral Calculus is an essential text for those preparing for a career in physics or applied math. Volume 1 introduces the foundational concepts of "function" and "limit", and offers detailed explanations that illustrate the "why" as well as the "how". Comprehensive coverage of the basics of integrals and differentials includes their applications as well as clearly-defined techniques and essential theorems. Multiple appendices provide supplementary explanation and author notes, as well as solutions and hints for all in-text problems.

This new edition is extensively revised and updated with a refocused layout. In addition to the inclusion of extra exercises, the quality and focus of the exercises in this book has improved, which will help motivate the reader. New features include a discussion of infinite products, and expanded sections on metric spaces, the Baire category theorem, multi-variable functions, and the Gamma function.

Reviews from the first edition:

"This is a dangerous book. Understanding Analysis is so well-written and the development of the theory so well-motivated that exposing students to it could well lead them to expect such excellence in all their textbooks. ... Understanding Analysis is perfectly titled; if your students read it that’s what’s going to happen. This terrific book will become the text of choice for the single-variable introductory analysis course; take a look at it next time you’re preparing that class."

-Steve Kennedy, The Mathematical Association of America, 2001

"Each chapter begins with a discussion section and ends with an epilogue. The discussion serves to motivate the content of the chapter while the epilogue points tantalisingly to more advanced topics. ... I wish I had written this book! The development of the subject follows the tried-and-true path, but the presentation is engaging and challenging. Abbott focuses attention immediately on the topics which make analysis fascinating ... and makes them accessible to an inexperienced audience."

-Scott Sciffer, The Australian Mathematical Society Gazette, 29:3, 2002

The five main ideas involve (1) insuring that in computing there is an intimate connection between the source of the problem and the usability of the answers (2) avoiding isolated formulas and algorithms in favor of a systematic study of alternate ways of doing the problem (3) avoidance of roundoff (4) overcoming the problem of truncation error (5) insuring the stability of a feedback system.

In this second edition, Professor Hamming (Naval Postgraduate School, Monterey, California) extensively rearranged, rewrote and enlarged the material. Moreover, this book is unique in its emphasis on the frequency approach and its use in the solution of problems. Contents include:

I. Fundamentals and Algorithms

II. Polynomial Approximation- Classical Theory

Ill. Fourier Approximation- Modern Theory

IV. Exponential Approximation ... and more

Highly regarded by experts in the field, this is a book with unlimited applications for undergraduate and graduate students of mathematics, science and engineering. Professionals and researchers will find it a valuable reference they will turn to again and again.

Opening chapters on classical mechanics examine the laws of particle mechanics; generalized coordinates and differentiable manifolds; oscillations, waves, and Hilbert space; and statistical mechanics. A survey of quantum mechanics covers the old quantum theory; the quantum-mechanical substitute for phase space; quantum dynamics and the Schrödinger equation; the canonical "quantization" of a classical system; some elementary examples and original discoveries by Schrödinger and Heisenberg; generalized coordinates; linear systems and the quantization of the electromagnetic field; and quantum-statistical mechanics.

The final section on group theory and quantum mechanics of the atom explores basic notions in the theory of group representations; perturbations and the group theoretical classification of eigenvalues; spherical symmetry and spin; and the n-electron atom and the Pauli exclusion principle.

Getting ready for calculus but still feel a bit confused? Haveno fear. Pre-Calculus For Dummies is an un-intimidating,hands-on guide that walks you through all the essential topics,from absolute value and quadratic equations to logarithms andexponential functions to trig identities and matrix operations.

With this guide's help you'll quickly and painlessly get ahandle on all of the concepts — not just the number crunching— and understand how to perform all pre-calc tasks, fromgraphing to tackling proofs. You'll also get a new appreciation forhow these concepts are used in the real world, and find out thatgetting a decent grade in pre-calc isn't as impossible as youthought.

Updated with fresh example equations and detailedexplanationsTracks to a typical pre-calculus classServes as an excellent supplement to classroom learningIf "the fun and easy way to learn pre-calc" seems like acontradiction, get ready for a wealth of surprises inPre-Calculus For Dummies!

Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, semi-Markov processes, and queuing processes. Each chapter opens with an illustrative case study, and comprehensive presentations include formulation of models, determination of parameters, analysis, and interpretation of results. Programming language–independent algorithms appear for all simulation and numerical procedures.

Starting with an overview of the real number system, the text presents results for subsets and functions related to Euclidean space of n dimensions. It offers a rigorous review of the fundamentals of calculus, emphasizing power series expansions and introducing the theory of complex-analytic functions. Subsequent chapters cover sequences of functions, normed linear spaces, and the Lebesgue interval. They discuss most of the basic properties of integral and measure, including a brief look at orthogonal expansions. A chapter on differentiable mappings concludes the text, addressing implicit and inverse function theorems and the change of variable theorem. Exercises appear throughout the book, and extensive supplementary material includes a bibliography, list of symbols, index, and appendix with background in elementary set theory

Get the confidence and the skills you need to master differential equations!

Need to know how to solve differential equations? This easy-to-follow, hands-on workbook helps you master the basic concepts and work through the types of problems you'll encounter in your coursework. You get valuable exercises, problem-solving shortcuts, plenty of workspace, and step-by-step solutions to every equation. You'll also memorize the most-common types of differential equations, see how to avoid common mistakes, get tips and tricks for advanced problems, improve your exam scores, and much more!

More than 100 Problems!

Detailed, fully worked-out solutions to problems

The inside scoop on first, second, and higher order differential equations

A wealth of advanced techniques, including power series

THE DUMMIES WORKBOOK WAY

Quick, refresher explanations

Step-by-step procedures

Hands-on practice exercises

Ample workspace to work out problems

Online Cheat Sheet

A dash of humor and fun

Chapter headings include notions from set theory, the real number system, metric spaces, continuous functions, differentiation, Riemann integration, interchange of limit operations, the method of successive approximations, partial differentiation, and multiple integrals.

Following some introductory material on very basic set theory and the deduction of the most important properties of the real number system from its axioms, Professor Rosenlicht gets to the heart of the book: a rigorous and carefully presented discussion of metric spaces and continuous functions, including such topics as open and closed sets, limits and continuity, and convergent sequence of points and of functions. Subsequent chapters cover smoothly and efficiently the relevant aspects of elementary calculus together with several somewhat more advanced subjects, such as multivariable calculus and existence theorems. The exercises include both easy problems and more difficult ones, interesting examples and counter examples, and a number of more advanced results.

Introduction to Analysis lends itself to a one- or two-quarter or one-semester course at the undergraduate level. It grew out of a course given at Berkeley since 1960. Refinement through extensive classroom use and the author’s pedagogical experience and expertise make it an unusually accessible introductory text.

The University of Toronto Undergraduate Competition was founded to provide additional competition experience for undergraduates preparing for the Putnam competition, and is particularly useful for the freshman or sophomore undergraduate. Lecturers, instructors, and coaches for mathematics competitions will find this presentation useful. Many of the problems are of intermediate difficulty and relate to the first two years of the undergraduate curriculum. The problems presented may be particularly useful for regular class assignments. Moreover, this text contains problems that lie outside the regular syllabus and may interest students who are eager to learn beyond the classroom.

A mathematical proof is an inferential argument for a mathematical statement. Since the time of the ancient Greek mathematicians, the proof has been a cornerstone of the science of mathematics. The goal of this book is to help students learn to follow and understand the function and structure of mathematical proof and to produce proofs of their own.

An Introduction to Proof through Real Analysis is based on course material developed and refined over thirty years by Professor Daniel J. Madden and was designed to function as a complete text for both first proofs and first analysis courses. Written in an engaging and accessible narrative style, this book systematically covers the basic techniques of proof writing, beginning with real numbers and progressing to logic, set theory, topology, and continuity. The book proceeds from natural numbers to rational numbers in a familiar way, and justifies the need for a rigorous definition of real numbers. The mathematical climax of the story it tells is the Intermediate Value Theorem, which justifies the notion that the real numbers are sufficient for solving all geometric problems.

• Concentrates solely on designing proofs by placing instruction on proof writing on top of discussions of specific mathematical subjects

• Departs from traditional guides to proofs by incorporating elements of both real analysis and algebraic representation

• Written in an engaging narrative style to tell the story of proof and its meaning, function, and construction

• Uses a particular mathematical idea as the focus of each type of proof presented

• Developed from material that has been class-tested and fine-tuned over thirty years in university introductory courses

An Introduction to Proof through Real Analysis is the ideal introductory text to proofs for second and third-year undergraduate mathematics students, especially those who have completed a calculus sequence, students learning real analysis for the first time, and those learning proofs for the first time.

Daniel J. Madden, PhD, is an Associate Professor of Mathematics at The University of Arizona, Tucson, Arizona, USA. He has taught a junior level course introducing students to the idea of a rigorous proof based on real analysis almost every semester since 1990. Dr. Madden is the winner of the 2015 Southwest Section of the Mathematical Association of America Distinguished Teacher Award.

Jason A. Aubrey, PhD, is Assistant Professor of Mathematics and Director, Mathematics Center of the University of Arizona.

This third revised edition is a considerably rewritten and updated version which now includes all important developments which have taken place in recent years.

Asymptotics is not new. Its importance in many areas of pure and applied mathematics has been recognized since the days of Laplace. Asymptotic estimates of series, integrals, and other expressions are commonly needed in physics, engineering, and other fields. Unfortunately, for many years there was a dearth of literature dealing with this difficult but important topic. Then, in 1958, Professor N. G. de Bruijn published this pioneering study. Widely considered the first text on the subject — and the first comprehensive coverage of this broad field — the book embodied an original and highly effective approach to teaching asymptotics. Rather than trying to formulate a general theory (which, in the author's words, "leads to stating more and more about less and less") de Bruijn teaches asymptotic methods through a rigorous process of explaining worked examples in detail.

Most of the important asymptotic methods are covered here with unusual effectiveness and clarity: "Every step in the mathematical process is explained, its purpose and necessity made clear, with the result that the reader not only has no difficulty in following the rigorous proofs, but even turns to them with eager expectation." (Nuclear Physics).

Part of the attraction of this book is its pleasant, straightforward style of exposition, leavened with a touch of humor and occasionally even using the dramatic form of dialogue. The book begins with a general introduction (fundamental to the whole book) on O and o notation and asymptotic series in general. Subsequent chapters cover estimation of implicit functions and the roots of equations; various methods of estimating sums; extensive treatment of the saddle-point method with full details and intricate worked examples; a brief introduction to Tauberian theorems; a detailed chapter on iteration; and a short chapter on asymptotic behavior of solutions of differential equations. Most chapters progress from simple examples to difficult problems; and in some cases, two or more different treatments of the same problem are given to enable the reader to compare different methods. Several proofs of the Stirling theorem are included, for example, and the problem of the iterated sine is treated twice in Chapter 8. Exercises are given at the end of each chapter.

Since its first publication, Asymptotic Methods in Analysis has received widespread acclaim for its rigorous and original approach to teaching a difficult subject. This Dover edition, with corrections by the author, offers students, mathematicians, engineers, and physicists not only an inexpensive, comprehensive guide to asymptotic methods but also an unusually lucid and useful account of a significant mathematical discipline.

An Instructor's Manual presenting detailed solutions to all theproblems in the book is available online.

Reading Visual Complex Functions requires no prerequisites except some basic knowledge of real calculus and plane geometry. The text is self-contained and covers all the main topics usually treated in a first course on complex analysis. With separate chapters on various construction principles, conformal mappings and Riemann surfaces it goes somewhat beyond a standard programme and leads the reader to more advanced themes.

In a second storyline, running parallel to the course outlined above, one learns how properties of complex functions are reflected in and can be read off from phase portraits. The book contains more than 200 of these pictorial representations which endow individual faces to analytic functions. Phase portraits enhance the intuitive understanding of concepts in complex analysis and are expected to be useful tools for anybody working with special functions – even experienced researchers may be inspired by the pictures to new and challenging questions.

Visual Complex Functions may also serve as a companion to other texts or as a reference work for advanced readers who wish to know more about phase portraits.

By focusing on the set-theoretic aspects of analysis, this text makes the best of two worlds: it combines a down-to-earth introduction to set theory with an exposition of the essence of analysis—the study of infinite processes on the real numbers. It is intended for senior undergraduates, but it will also be attractive to graduate students and professional mathematicians who, until now, have been content to "assume" the real numbers. Its prerequisites are calculus and basic mathematics.

Mathematical history is woven into the text, explaining how the concepts of real number and infinity developed to meet the needs of analysis from ancient times to the late twentieth century. This rich presentation of history, along with a background of proofs, examples, exercises, and explanatory remarks, will help motivate the reader. The material covered includes classic topics from both set theory and real analysis courses, such as countable and uncountable sets, countable ordinals, the continuum problem, the Cantor–Schröder–Bernstein theorem, continuous functions, uniform convergence, Zorn's lemma, Borel sets, Baire functions, Lebesgue measure, and Riemann integrable functions.

Introduction to Computation and Modeling for Differential Equations, Second Edition features the essential principles and applications of problem solving across disciplines such as engineering, physics, and chemistry. The Second Edition integrates the science of solving differential equations with mathematical, numerical, and programming tools, specifically with methods involving ordinary differential equations; numerical methods for initial value problems (IVPs); numerical methods for boundary value problems (BVPs); partial differential equations (PDEs); numerical methods for parabolic, elliptic, and hyperbolic PDEs; mathematical modeling with differential equations; numerical solutions; and finite difference and finite element methods.

The author features a unique “Five-M” approach: Modeling, Mathematics, Methods, MATLAB®, and Multiphysics, which facilitates a thorough understanding of how models are created and preprocessed mathematically with scaling, classification, and approximation and also demonstrates how a problem is solved numerically using the appropriate mathematical methods. With numerous real-world examples to aid in the visualization of the solutions, Introduction to Computation and Modeling for Differential Equations, Second Edition includes:

New sections on topics including variational formulation, the finite element method, examples of discretization, ansatz methods such as Galerkin’s method for BVPs, parabolic and elliptic PDEs, and finite volume methodsNumerous practical examples with applications in mechanics, fluid dynamics, solid mechanics, chemical engineering, heat conduction, electromagnetic field theory, and control theory, some of which are solved with computer programs MATLAB and COMSOL Multiphysics®Additional exercises that introduce new methods, projects, and problems to further illustrate possible applicationsA related website with select solutions to the exercises, as well as the MATLAB data sets for ordinary differential equations (ODEs) and PDEsIntroduction to Computation and Modeling for Differential Equations, Second Edition is a useful textbook for upper-undergraduate and graduate-level courses in scientific computing, differential equations, ordinary differential equations, partial differential equations, and numerical methods. The book is also an excellent self-study guide for mathematics, science, computer science, physics, and engineering students, as well as an excellent reference for practitioners and consultants who use differential equations and numerical methods in everyday situations.

Are you preparing for calculus? This hands-on workbook helps youmaster basic pre-calculus concepts and practice the types ofproblems you'll encounter in the course. You'll get hundreds ofvaluable exercises, problem-solving shortcuts, plenty of workspace,and step-by-step solutions to every problem. You'll also memorizethe most frequently used equations, see how to avoid commonmistakes, understand tricky trig proofs, and much more.Pre-Calculus Workbook For Dummies is the perfect tool foranyone who wants or needs more review before jumping into acalculus class. You'll get guidance and practical exercisesdesigned to help you acquire the skills needed to excel inpre-calculus and conquer the next contender-calculus.

Serves as a course guide to help you master pre-calculusconceptsCovers the inside scoop on quadratic equations, graphingfunctions, polynomials, and moreCovers the types of problems you'll encounter in yourcourseworkWith the help of Pre-Calculus Workbook For Dummies you'lllearn how to solve a range of mathematical problems as well assharpen your skills and improve your performance.

Newsletter on Computational and Applied Mathematics, 1991

"...one of the best textbooks introducing several generations of mathematicians to higher mathematics. ... This excellent book is highly recommended both to instructors and students."

Acta Scientiarum Mathematicarum, 1991

The author carefully develops the necessary foundations while minimizing the use of technical language. He expertly guides the reader to deep fundamental analysis results, including completeness, key differential equations, definite integrals, Taylor series for standard functions, and the Euler identity. This pioneering book takes the sophisticated reader from simple familiar algebra to the heart of analysis. Furthermore, it should be of interest as a source of new ideas and as supplementary reading for high school teachers, and for students and instructors of calculus and analysis.