## Similar

This highly versatile text provides mathematical background used in a wide variety of disciplines, including mathematics and mathematics education, computer science, biology, chemistry, engineering, communications, and business.

Some of the major features and strengths of this textbook

More than 1,600 exercises, ranging from elementary to challenging, are included with hints/answers to all odd-numbered exercises.

Descriptions of proof techniques are accessible and lively.

Students benefit from the historical discussions throughout the textbook.

The second edition adds a discussion of vector auto-regressive, structural vector auto-regressive, and structural vector error-correction models. To analyze the interactions between the investigated variables, further impulse response function and forecast error variance decompositions are introduced as well as forecasting. The author explains how these model types relate to each other.

"Seamless R and C++ integration with Rcpp" is simply a wonderful book. For anyone who uses C/C++ and R, it is an indispensable resource. The writing is outstanding. A huge bonus is the section on applications. This section covers the matrix packages Armadillo and Eigen and the GNU Scientific Library as well as RInside which enables you to use R inside C++. These applications are what most of us need to know to really do scientific programming with R and C++. I love this book. -- Robert McCulloch, University of Chicago Booth School of Business

Rcpp is now considered an essential package for anybody doing serious computational research using R. Dirk's book is an excellent companion and takes the reader from a gentle introduction to more advanced applications via numerous examples and efficiency enhancing gems. The book is packed with all you might have ever wanted to know about Rcpp, its cousins (RcppArmadillo, RcppEigen .etc.), modules, package development and sugar. Overall, this book is a must-have on your shelf. -- Sanjog Misra, UCLA Anderson School of Management

The Rcpp package represents a major leap forward for scientific computations with R. With very few lines of C++ code, one has R's data structures readily at hand for further computations in C++. Hence, high-level numerical programming can be made in C++ almost as easily as in R, but often with a substantial speed gain. Dirk is a crucial person in these developments, and his book takes the reader from the first fragile steps on to using the full Rcpp machinery. A very recommended book! -- Søren Højsgaard, Department of Mathematical Sciences, Aalborg University, Denmark

"Seamless R and C ++ Integration with Rcpp" provides the first comprehensive introduction to Rcpp. Rcpp has become the most widely-used language extension for R, and is deployed by over one-hundred different CRAN and BioConductor packages. Rcpp permits users to pass scalars, vectors, matrices, list or entire R objects back and forth between R and C++ with ease. This brings the depth of the R analysis framework together with the power, speed, and efficiency of C++.

Dirk Eddelbuettel has been a contributor to CRAN for over a decade and maintains around twenty packages. He is the Debian/Ubuntu maintainer for R and other quantitative software, edits the CRAN Task Views for Finance and High-Performance Computing, is a co-founder of the annual R/Finance conference, and an editor of the Journal of Statistical Software. He holds a Ph.D. in Mathematical Economics from EHESS (Paris), and works in Chicago as a Senior Quantitative Analyst.

Covering all the mathematical techniques required to resolve geometric problems and design computer programs for computer graphic applications, each chapter explores a specific mathematical topic prior to moving forward into the more advanced areas of matrix transforms, 3D curves and surface patches. Problem-solving techniques using vector analysis and geometric algebra are also discussed.

All the key areas are covered including: Numbers, Algebra, Trigonometry, Coordinate geometry, Transforms, Vectors, Curves and surfaces, Barycentric coordinates, Analytic geometry.

Plus – and unusually in a student textbook – a chapter on geometric algebra is included.

The extensively revised second edition provides further clarification of matters that typically give rise to difficulty in the classroom and restructures the chapters on logic to emphasize the role of consequence relations and higher-level rules, as well as including more exercises and solutions.

Topics and features: teaches finite mathematics as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear away confusions; provides numerous exercises, with selected solutions, to test and deepen the reader’s understanding.

This clearly-written text/reference is a must-read for first-year undergraduate students of computing. Assuming only minimal mathematical background, it is ideal for both the classroom and independent study.

The book begins by tracing the development of cryptology from that of an arcane practice used, for example, to conceal alchemic recipes, to the modern scientific method that is studied and employed today. The remainder of the book explores the modern aspects and applications of cryptography, covering symmetric- and public-key cryptography, cryptographic protocols, key management, message authentication, e-mail and Internet security, and advanced applications such as wireless security, smart cards, biometrics, and quantum cryptography. The author also includes non-cryptographic security issues and a chapter devoted to information theory and coding. Nearly 200 diagrams, examples, figures, and tables along with abundant references and exercises complement the discussion.

Written by leading authority and best-selling author on the subject Richard A. Mollin, Codes: The Guide to Secrecy from Ancient to Modern Times is the essential reference for anyone interested in this exciting and fascinating field, from novice to veteran practitioner.

It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples.

Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors.

The book covers key foundation topics:

o Taylor series methods

o Runge--Kutta methods

o Linear multistep methods

o Convergence

o Stability

and a range of modern themes:

o Adaptive stepsize selection

o Long term dynamics

o Modified equations

o Geometric integration

o Stochastic differential equations

The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

This concise and easy-to-read textbook/reference presents an algorithmic approach to mathematical analysis, with a focus on modelling and on the applications of analysis. Fully integrating mathematical software into the text as an important component of analysis, the book makes thorough use of examples and explanations using MATLAB, Maple, and Java applets. Mathematical theory is described alongside the basic concepts and methods of numerical analysis, supported by computer experiments and programming exercises, and an extensive use of figure illustrations.

Topics and features: thoroughly describes the essential concepts of analysis, covering real and complex numbers, trigonometry, sequences and series, functions, derivatives and antiderivatives, definite integrals and double integrals, and curves; provides summaries and exercises in each chapter, as well as computer experiments; discusses important applications and advanced topics, such as fractals and L-systems, numerical integration, linear regression, and differential equations; presents tools from vector and matrix algebra in the appendices, together with further information on continuity; includes definitions, propositions and examples throughout the text, together with a list of relevant textbooks and references for further reading; supplementary software can be downloaded from the book’s webpage at www.springer.com.

This textbook is essential for undergraduate students in Computer Science. Written to specifically address the needs of computer scientists and researchers, it will also serve professionals looking to bolster their knowledge in such fundamentals extremely well.

Research on distributions associated with sorting algorithms has grown dramatically over the last few decades, spawning many exact and limiting distributions of complexity measures for many sorting algorithms. Yet much of this information has been scattered in disparate and highly specialized sources throughout the literature. In Sorting: A Distribution Theory, leading authority Hosam Mahmoud compiles, consolidates, and clarifies the large volume of available research, providing a much-needed, comprehensive treatment of the entire emerging distributional theory of sorting.

Mahmoud carefully constructs a logical framework for the analysis of all standard sorting algorithms, focusing on the development of the probability distributions associated with the algorithms, as well as other issues in probability theory such as measures of concentration and rates of convergence. With an emphasis on narrative rather than technical explanations, this exceptionally well-written book makes new results easily accessible to a broad spectrum of readers, including computer professionals, scientists, mathematicians, and engineers. Sorting: A Distribution Theory:

* Contains introductory material on complete and partial sorting

* Explains insertion sort, quick sort, and merge sort, among other methods

* Offers verbal descriptions of the mechanics of the algorithms as well as the necessary code

* Illustrates the distribution theory of sorting using a broad array of both classical and modern techniques

* Features a variety of end-of-chapter exercises

This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

The new edition of this classic book gives all the major concepts, techniques and applications of sparse representation, reflecting the key role the subject plays in today's signal processing. The book clearly presents the standard representations with Fourier, wavelet and time-frequency transforms, and the construction of orthogonal bases with fast algorithms. The central concept of sparsity is explained and applied to signal compression, noise reduction, and inverse problems, while coverage is given to sparse representations in redundant dictionaries, super-resolution and compressive sensing applications.

Features:

* Balances presentation of the mathematics with applications to signal processing

* Algorithms and numerical examples are implemented in WaveLab, a MATLAB toolbox

New in this edition

* Sparse signal representations in dictionaries

* Compressive sensing, super-resolution and source separation

* Geometric image processing with curvelets and bandlets

* Wavelets for computer graphics with lifting on surfaces

* Time-frequency audio processing and denoising

* Image compression with JPEG-2000

* New and updated exercises

A Wavelet Tour of Signal Processing: The Sparse Way, Third Edition, is an invaluable resource for researchers and R&D engineers wishing to apply the theory in fields such as image processing, video processing and compression, bio-sensing, medical imaging, machine vision and communications engineering.

Stephane Mallat is Professor in Applied Mathematics at École Polytechnique, Paris, France. From 1986 to 1996 he was a Professor at the Courant Institute of Mathematical Sciences at New York University, and between 2001 and 2007, he co-founded and became CEO of an image processing semiconductor company.Includes all the latest developments since the book was published in 1999, including its

application to JPEG 2000 and MPEG-4

Algorithms and numerical examples are implemented in Wavelab, a MATLAB toolbox

Balances presentation of the mathematics with applications to signal processing

This hands-on textbook/reference presents a comprehensive review of key distributed graph algorithms for computer network applications, with a particular emphasis on practical implementation. Each chapter opens with a concise introduction to a specific problem, supporting the theory with numerous examples, before providing a list of relevant algorithms. These algorithms are described in detail from conceptual basis to pseudocode, complete with graph templates for the stepwise implementation of the algorithm, followed by its analysis. The chapters then conclude with summarizing notes and programming exercises.

Topics and features: introduces a range of fundamental graph algorithms, covering spanning trees, graph traversal algorithms, routing algorithms, and self-stabilization; reviews graph-theoretical distributed approximation algorithms with applications in ad hoc wireless networks; describes in detail the implementation of each algorithm, with extensive use of supporting examples, and discusses their concrete network applications; examines key graph-theoretical algorithm concepts, such as dominating sets, and parameters for mobility and energy levels of nodes in wireless ad hoc networks, and provides a contemporary survey of each topic; presents a simple simulator, developed to run distributed algorithms; provides practical exercises at the end of each chapter.

This classroom-tested and easy-to-follow textbook is essential reading for all graduate students and researchers interested in discrete mathematics, algorithms and computer networks.

Discrete mathematics has the answer to these—and many other—questions of picking, choosing, and shuffling. T. S. Michael's gem of a book brings this vital but tough-to-teach subject to life using examples from real life and popular culture. Each chapter uses one problem—such as slicing a pizza—to detail key concepts about counting numbers and arranging finite sets. Michael takes a different perspective in tackling each of eight problems and explains them in differing degrees of generality, showing in the process how the same mathematical concepts appear in varied guises and contexts. In doing so, he imparts a broader understanding of the ideas underlying discrete mathematics and helps readers appreciate and understand mathematical thinking and discovery.

This book explains the basic concepts of discrete mathematics and demonstrates how to apply them in largely nontechnical language. The explanations and formulas can be grasped with a basic understanding of linear equations.

The Fortran 2003 Handbook is the definitive and comprehensive guide to Fortran 2003, the latest standard version of Fortran. This all-inclusive volume offers a reader-friendly, easy-to-follow and informal description of Fortran 2003, and has been developed to provide not only a readable explanation of features, but also some rationale for the inclusion of features and their use. Experienced Fortran 95 programmers will be able to use this volume to assimilate quickly those features in Fortran 2003 that are not in Fortran 95 (Fortran 2003 contains all of the features of Fortran 95).

Features and benefits:

• The complete syntax of Fortran 2003 is supplied.

• Each of the intrinsic standard procedures is described in detail.

• There is a complete listing of the new, obsolescent, and deleted features.

• Numerous examples are given throughout, providing insights into intended uses and interactions of the features.

• IEEE module procedures are covered thoroughly.

• Chapters begin with a summary of the main terms and concepts described.

• Models provide the reader with insight into the language.

Key Topics:

• Fortran Concepts and Terms

• Language Elements and Source Form

• Data Types

• Block Constructs and Execution Control

• I/O Processing and Editing

• Interoperability with C

• Standard Intrinsic Procedures

This highly versatile and authoritative handbook is intended for anyone who wants a comprehensive survey of Fortran 2003, including those familiar with programming language concepts but unfamiliar with Fortran. It offers a practical description of Fortran 2003 for professionals developing sophisticated application and commercial software in Fortran, as well as developers of Fortran compilers.

All authors have been heavily involved in the development of Fortran standards. They have served on national and international Fortran standard development committees, and include a chair, convenors and editors of the Fortran 90, 95, and 2003 standards. In addition, Walt Brainerd is the owner of The Fortran Company, Tucson, AZ, USA.

The first part provides an introduction to basic procedures for handling and operating with text strings. Then, it reviews major mathematical modeling approaches. Statistical and geometrical models are also described along with main dimensionality reduction methods. Finally, it presents some specific applications such as document clustering, classification, search and terminology extraction.

All descriptions presented are supported with practical examples that are fully reproducible. Further reading, as well as additional exercises and projects, are proposed at the end of each chapter for those readers interested in conducting further experimentation.

At first glance, this riddle may seem impossible to solve: how can all of the necessary information be transmitted by the prisoners using only a single light bulb? There is indeed a solution, however, and it can be found by reasoning about knowledge.

This book provides a guided tour through eleven classic logic puzzles that are engaging and challenging and often surprising in their solutions. These riddles revolve around the characters’ declarations of knowledge, ignorance, and the appearance that they are contradicting themselves in some way. Each chapter focuses on one puzzle, which the authors break down in order to guide the reader toward the solution.

For general readers and students with little technical knowledge of mathematics, One Hundred Prisoners and a Light Bulb will be an accessible and fun introduction to epistemic logic. Additionally, more advanced students and their teachers will find it to be a valuable reference text for introductory course work and further study.

The Handbook of Applied Cryptography provides a treatment that is multifunctional:

It serves as an introduction to the more practical aspects of both conventional and public-key cryptography

It is a valuable source of the latest techniques and algorithms for the serious practitioner

It provides an integrated treatment of the field, while still presenting each major topic as a self-contained unit

It provides a mathematical treatment to accompany practical discussions

It contains enough abstraction to be a valuable reference for theoreticians while containing enough detail to actually allow implementation of the algorithms discussed

Now in its third printing, this is the definitive cryptography reference that the novice as well as experienced developers, designers, researchers, engineers, computer scientists, and mathematicians alike will use.

The common approach to presenting mathematical concepts and operators is to define them in terms of properties they satisfy, and then based on these definitions develop ways of computing the result of applying the operators and prove them correct. This book is mainly written for computer science students, so here the author takes a different approach: he starts by defining ways of calculating the results of applying the operators and then proves that they satisfy various properties. After justifying his underlying approach the author offers detailed chapters covering propositional logic, predicate calculus, sets, relations, discrete structures, structured types, numbers, and reasoning about programs.

The book contains chapter and section summaries, detailed proofs and many end-of-section exercises -- key to the learning process. The book is suitable for undergraduate and graduate students, and although the treatment focuses on areas with frequent applications in computer science, the book is also suitable for students of mathematics and engineering.The 54 revised full papers presented in this volume were carefully reviewed and selected from 148 submissions.

The Algorithms and Data Structures Symposium - WADS (formerly Workshop on Algorithms And Data Structures), which alternates with the Scandinavian Workshop on Algorithm Theory, is intended as a forum for researchers in the area of design and analysis of algorithms and data structures. WADS includes papers presenting original research on algorithms and data structures in all areas, including bioinformatics, combinatorics, computational geometry, databases, graphics, and parallel and distributed computing.

The glossary defines over 50 R terms using SAS/SPSS jargon and again using R jargon. The table of contents and the index allow you to find equivalent R functions by looking up both SAS statements and SPSS commands. When finished, you will be able to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses.

This new edition has updated programming, an expanded index, and even more statistical methods covered in over 25 new sections.

Key features:

* Begins with a brief survey of basic notions in algebraic and differential geometry, Lie groups and Lie algebras

* Examines how, in a new chapter, Clifford algebra is relevant to robot kinematics and Euclidean geometry in 3D

* Introduces mathematical concepts and methods using examples from robotics

* Solves substantial problems in the design and control of robots via new methods

* Provides solutions to well-known enumerative problems in robot kinematics using intersection theory on the group of rigid body motions

* Extends dynamics, in another new chapter, to robots with end-effector constraints, which lead to equations of motion for parallel manipulators

Geometric Fundamentals of Robotics serves a wide audience of graduate students as well as researchers in a variety of areas, notably mechanical engineering, computer science, and applied mathematics. It is also an invaluable reference text.

-----

From a Review of the First Edition:

"The majority of textbooks dealing with this subject cover various topics in kinematics, dynamics, control, sensing, and planning for robot manipulators. The distinguishing feature of this book is that it introduces mathematical tools, especially geometric ones, for solving problems in robotics. In particular, Lie groups and allied algebraic and geometric concepts are presented in a comprehensive manner to an audience interested in robotics. The aim of the author is to show the power and elegance of these methods as they apply to problems in robotics."

--MathSciNet

This biography attempts to shed light on all facets of Zermelo's life and achievements. Personal and scientific aspects are kept separate as far as coherence allows, in order to enable the reader to follow the one or the other of these threads. The description of his personality owes much to conversations with his late wife Gertrud. The presentation of his work explores motivations, aims, acceptance, and influence. Selected proofs and information gleaned from unpublished notes and letters add to the analysis.

All facts presented are documented by appropriate sources. The biography contains more than 40 photos and facsimiles, most of them provided by Gertrud Zermelo and published here for the first time.

The author collects the main results in the field in this up-to-date, comprehensive reference volume. He highlights significant achievements in the area, and points to research directions and open problems. The book will be of interest to researchers and graduate students in theoretical computer science and mathematics, in particular those working in algebraic combinatorics and combinatorics on words. It will also be of interest to specialists in other branches of mathematics, theoretical physics, and computational biology.

The author collects the main results in the field in this up-to-date, comprehensive reference volume. He highlights significant achievements in the area, and points to research directions and open problems. The book will be of interest to researchers and graduate students in theoretical computer science and mathematics, in particular those working in algebraic combinatorics and combinatorics on words. It will also be of interest to specialists in other branches of mathematics, theoretical physics, and computational biology.

Leading experts have joined forces for the first time to explain the state of the art in quantum computing, hash-based cryptography, code-based cryptography, lattice-based cryptography, and multivariate cryptography. Mathematical foundations and implementation issues are included.

This book is an essential resource for students and researchers who want to contribute to the field of post-quantum cryptography.

The book will be of interest to musicians and musicologists, particularly those engaged with Indian music.

The second part of the book begins with a consideration of various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. The second part also describes some of the many applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. The brief coverage in this part illustrates the matrix theory developed in the first part of the book. The first two parts of the book can be used as the text for a course in matrix algebra for statistics students, or as a supplementary text for various courses in linear models or multivariate statistics.

The third part of this book covers numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. This part is essentially self-contained, although it assumes some ability to program in Fortran or C and/or the ability to use R/S-Plus or Matlab. This part of the book can be used as the text for a course in statistical computing, or as a supplementary text for various courses that emphasize computations.

The book includes a large number of exercises with some solutions provided in an appendix.

The book contains close to150 figures produced with lattice. Many of the examples emphasize principles of good graphical design; almost all use real data sets that are publicly available in various R packages. All code and figures in the book are also available online, along with supplementary material covering more advanced topics.

Key features:

* Introductory chapters present the main ideas and topics in graph theory—walks, paths and cycles, radius, diameter, eccentricity, cuts and connectivity, trees

* Subsequent chapters examine specialized topics and applications

* Numerous examples and illustrations

* Comprehensive index and bibliography, with suggested literature for more advanced material

New to the second edition:

* New chapters on labeling and communications networks and small-worlds

* Expanded beginner’s material in the early chapters, including more examples, exercises, hints and solutions to key problems

* Many additional changes, improvements, and corrections throughout resulting from classroom use and feedback

Striking a balance between a theoretical and practical approach with a distinctly applied flavor, this gentle introduction to graph theory consists of carefully chosen topics to develop graph-theoretic reasoning for a mixed audience. Familiarity with the basic concepts of set theory, along with some background in matrices and algebra, and a little mathematical maturity are the only prerequisites.

-----

From a review of the first edition:

"Altogether the book gives a comprehensive introduction to graphs, their theory and their application...The use of the text is optimized when the exercises are solved. The obtained skills improve understanding of graph theory as well... It is very useful that the solutions of these exercises are collected in an appendix."

—Simulation News Europe

Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems.

The essential introduction to discrete and computational geometry

Covers traditional topics as well as new and advanced material

Features numerous full-color illustrations, exercises, and unsolved problems

Suitable for sophomores in mathematics, computer science, engineering, or physics

Rigorous but accessible

An online solutions manual is available (for teachers only). To obtain access, please e-mail: Vickie_Kearn@press.princeton.edu

This comprehensive, reader-friendly volume offers readers a high-level orientation, discussing the foundations of the field and presenting both the classical work and the most recent results. It covers an extremely rich array of topics including not only syntax and semantics but also phonology and morphology, probabilistic approaches, complexity, learnability, and the analysis of speech and handwriting.

As the first text of its kind, this innovative book will be a valuable tool and reference for those in information science (information retrieval and extraction, search engines) and in natural language technologies (speech recognition, optical character recognition, HCI). Exercises suitable for advanced readers are included as well as suggestions for further reading and an extensive bibliography.

"I'm pleased and impressed. The book is very readable, often entertaining---it tells what the issues are, what they are called, in what health they are, where more meat can be found. Given the enormous amount of material and concepts touched on, and the technical difficulties lying under the surface almost everywhere, the book betrays scholarship in a matter-of-fact way, making due impression on, but without clobbering, the reader. This is a book that invites READING THROUGH...".

Professor Tommaso Toffoli, Boston University, USA

"It is a remarkable achievement, essential reading for every linguist who aspires to be well informed about applications of mathematics in the language sciences."

Professor Geoffrey Pullum, University of Edinburgh, UK

"I really liked this book. First, it is written very well and secondly, the author has taken a rather non-standard but very attractive approach to mathematical linguistics. It is very refreshing."

Professor Aravind K. Joshi, University of Pennsylvania, USA

The book’s historical context is especially helpful during this, the centenary of Turing's birth. Alan Turing is widely regarded as the father of Computer Science, since many concepts in both the hardware and software of Computer Science can be traced to his pioneering research. Turing was a multi-faceted mathematician-engineer and was able to work on both concrete and abstract levels. This book shows how these two seemingly disparate aspects of Computer Science are intimately related. Further, the book treats the theoretical side of Computer Science as well, which also derives from Turing's research.

Computer Science: The Hardware, Software and Heart of It is designed as a professional book for practitioners and researchers working in the related fields of Quantum Computing, Cloud Computing, Computer Networking, as well as non-scientist readers. Advanced-level and undergraduate students concentrating on computer science, engineering and mathematics will also find this book useful.

Algorithms exert an extraordinary level of influence on our everyday lives - from dating websites and financial trading floors, through to online retailing and internet searches - Google's search algorithm is now a more closely guarded commercial secret than the recipe for Coca-Cola. Algorithms follow a series of instructions to solve a problem and will include a strategy to produce the best outcome possible from the options and permutations available. Used by scientists for many years and applied in a very specialized way they are now increasingly employed to process the vast amounts of data being generated, in investment banks, in the movie industry where they are used to predict success or failure at the box office and by social scientists and policy makers.

What if everything in life could be reduced to a simple formula? What if numbers were able to tell us which partners we were best matched with – not just in terms of attractiveness, but for a long-term committed marriage? Or if they could say which films would be the biggest hits at the box office, and what changes could be made to those films to make them even more successful? Or even who is likely to commit certain crimes, and when? This may sound like the world of science fiction, but in fact it is just the tip of the iceberg in a world that is increasingly ruled by complex algorithms and neural networks.

In The Formula, Luke Dormehl takes readers inside the world of numbers, asking how we came to believe in the all-conquering power of algorithms; introducing the mathematicians, artificial intelligence experts and Silicon Valley entrepreneurs who are shaping this brave new world, and ultimately asking how we survive in an era where numbers can sometimes seem to create as many problems as they solve.

If you're interested in learning the fundamentals of discrete mathematics but can't seem to get your brain to function, then here's your solution. Add this easy-to-follow guide to the equation and calculate how quickly you learn the essential concepts.

Written by award-winning math professor Steven Krantz, Discrete Mathematics Demystified explains this challenging topic in an effective and enlightening way. You will learn about logic, proofs, functions, matrices, sequences, series, and much more. Concise explanations, real-world examples, and worked equations make it easy to understand the material, and end-of-chapter exercises and a final exam help reinforce learning.

This fast and easy guide offers:

Numerous figures to illustrate key concepts Sample problems with worked solutions Coverage of set theory, graph theory, and number theory Chapters on cryptography and Boolean algebra A time-saving approach to performing better on an exam or at workSimple enough for a beginner, but challenging enough for an advanced student, Discrete Mathematics Demystified is your integral tool for mastering this complex subject.

The logical systems presented are: propositional logic, first-order logic, resolution and its application to logic programming, Hoare logic for the verification of sequential programs, and linear temporal logic

for the verification of concurrent programs.

The third edition has been entirely rewritten and includes new chapters on central topics of modern computer science: SAT solvers and model checking.

This book describes existing and advanced methods to reduce the dimensionality of numerical databases. For each method, the description starts from intuitive ideas, develops the necessary mathematical details, and ends by outlining the algorithmic implementation. Methods are compared with each other with the help of different illustrative examples.

The purpose of the book is to summarize clear facts and ideas about well-known methods as well as recent developments in the topic of nonlinear dimensionality reduction. With this goal in mind, methods are all described from a unifying point of view, in order to highlight their respective strengths and shortcomings.

The book is primarily intended for statisticians, computer scientists and data analysts. It is also accessible to other practitioners having a basic background in statistics and/or computational learning, like psychologists (in psychometry) and economists.

Fundamentals of Discrete Math for Computer Science provides an engaging and motivational introduction to traditional topics in discrete mathematics, in a manner specifically designed to appeal to computer science students. The text empowers students to think critically, to be effective problem solvers, to integrate theory and practice, and to recognize the importance of abstraction. Clearly structured and interactive in nature, the book presents detailed walkthroughs of several algorithms, stimulating a conversation with the reader through informal commentary and provocative questions.

Topics and features: highly accessible and easy to read, introducing concepts in discrete mathematics without requiring a university-level background in mathematics; ideally structured for classroom-use and self-study, with modular chapters following ACM curriculum recommendations; describes mathematical processes in an algorithmic manner, often including a walk-through demonstrating how the algorithm performs the desired task as expected; contains examples and exercises throughout the text, and highlights the most important concepts in each section; selects examples that demonstrate a practical use for the concept in question.

This easy-to-understand and fun-to-read textbook is ideal for an introductory discrete mathematics course for computer science students at the beginning of their studies. The book assumes no prior mathematical knowledge, and discusses concepts in programming as needed, allowing it to be used in a mathematics course taken concurrently with a student’s first programming course.

This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade.

The chapters on logic - propositional and first-order - provide a robust toolkit for logical reasoning, emphasizing the conceptual understanding of the language and the semantics of classical logic as well as practical applications through the easy to understand and use deductive systems of Semantic Tableaux and Resolution. The chapters on set theory, number theory, combinatorics and graph theory combine the necessary minimum of theory with numerous examples and selected applications. Written in a clear and reader-friendly style, each section ends with an extensive set of exercises, most of them provided with complete solutions which are available in the accompanying solutions manual.

Key Features:

Suitable for a variety of courses for students in both Mathematics and Computer Science. Extensive, in-depth coverage of classical logic, combined with a solid exposition of a selection of the most important fields of discrete mathematics Concise, clear and uncluttered presentation with numerous examples. Covers some applications including cryptographic systems, discrete probability and network algorithms.Logic and Discrete Mathematics: A Concise Introduction is aimed mainly at undergraduate courses for students in mathematics and computer science, but the book will also be a valuable resource for graduate modules and for self-study.

A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material.

Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves.

The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

This new edition contains computational exercises in the form of case studies which help understanding optimization methods beyond their theoretical, description, when coming to actual implementation. Besides, the nonsmooth optimization part has been substantially reorganized and expanded.

Math Bytes shows you how to do calculus using a bag of chocolate chips, and how to prove the Euler characteristic simply by doodling. Generously illustrated in color throughout, this lively and entertaining book also explains how to create fractal landscapes with a roll of the dice, pick a competitive bracket for March Madness, decipher the math that makes it possible to resize a computer font or launch an Angry Bird--and much, much more. All of the applications are presented in an accessible and engaging way, enabling beginners and advanced readers alike to learn and explore at their own pace--a bit and a byte at a time.

Peter Markos and Costas Soukoulis begin by establishing the analogy between wave propagation in electronic systems and electromagnetic media and then show how the transfer matrix can be easily applied to any type of wave propagation, such as electromagnetic, acoustic, and elastic waves. The transfer matrix approach of the tight-binding model allows readers to understand its implementation quickly and all the concepts of solid-state physics are clearly introduced. Markos and Soukoulis then build the discussion of such topics as random systems and localized and delocalized modes around the transfer matrix, bringing remarkable clarity to the subject. Total internal reflection, Brewster angles, evanescent waves, surface waves, and resonant tunneling in left-handed materials are introduced and treated in detail, as are important new developments like photonic crystals, negative index materials, and surface plasmons. Problem sets aid students working through the subject for the first time.

Key features:

* Presents rigorous discussion, with definitions, theorems, and proofs, but aimed at a non-specialist audience;

*Avoids linear algebra;

* Treats informally the few unavoidable concepts from multivariable calculus, such as double integrals;

* Motivates new concepts throughout using examples and brief conceptual discussions;

* Develops basic ideas with clear definitions, carefully designed notation and techniques of statistical analysis, along with well-chosen examples, exercises and applications.

The book contains enough material for two semesters but, with judicious selection, it can also be used for a one-semester course, either in probability and statistics or in probability alone. .Advanced undergraduate and graduate students in computer science, engineering, and other natural and social sciences with only a basic background in calculus will benefit from this introductory text balancing theory with applications.