## Similar

A New York Times Bestseller

Top Business Book of 2015 at Forbes

One of NBCNews.com 12 Notable Science and Technology Books of 2015

What are the jobs of the future? How many will there be? And who will have them? As technology continues to accelerate and machines begin taking care of themselves, fewer people will be necessary. Artificial intelligence is already well on its way to making "good jobs" obsolete: many paralegals, journalists, office workers, and even computer programmers are poised to be replaced by robots and smart software. As progress continues, blue and white collar jobs alike will evaporate, squeezing working- and middle-class families ever further. At the same time, households are under assault from exploding costs, especially from the two major industries-education and health care-that, so far, have not been transformed by information technology. The result could well be massive unemployment and inequality as well as the implosion of the consumer economy itself.

The past solutions to technological disruption, especially more training and education, aren't going to work. We must decide, now, whether the future will see broad-based prosperity or catastrophic levels of inequality and economic insecurity. Rise of the Robots is essential reading to understand what accelerating technology means for our economic prospects-not to mention those of our children-as well as for society as a whole.

The second edition of a bestseller, Human Factors in Simple and Complex Systems provides the necessary understanding of the breadth and depth of human factors issues that influence the design, implementation, and evaluation of products and systems. Emphasizing the close relationship between basic theory and application, the authors delineate a framework for the research process, present an integrated view of the current state of knowledge, and examine how these factors can be applied to system design. The new edition addresses such concepts as situation awareness and highlights topics of interest, with a special focus on computer applications and human-computer interaction.

See what’s new in the Second Edition

New topics, such as situational awareness, that capture the tremendous changes in human factors and ergonomics Tightly integrates basic research and application, strengthening the link between knowledge and practice Each chapter includes a separate box that discusses a topic of current interest related to human interaction with computers and recent technology

Demonstrating a general approach to solving a broad range of system problems, the book provides coverage of the theoretical foundation on which the discipline of human factors is built. Structured around human information processing, it covers the full range of contemporary human factors and ergonomics, then shows you how to apply them.

The book begins with a short review of calculus and ordinary differential equations, then moves on to explore integral curves and surfaces of vector fields, quasi-linear and linear equations of first order, series solutions and the Cauchy Kovalevsky theorem. It then delves into linear partial differential equations, examines the Laplace, wave and heat equations, and concludes with a brief treatment of hyperbolic systems of equations.

Among the most important features of the text are the challenging problems at the end of each section which require a wide variety of responses from students, from providing details of the derivation of an item presented to solving specific problems associated with partial differential equations. Requiring only a modest mathematical background, the text will be indispensable to those who need to use partial differential equations in solving physical problems. It will provide as well the mathematical fundamentals for those who intend to pursue the study of more advanced topics, including modern theory.

It used to be that to diagnose an illness, interpret legal documents, analyze foreign policy, or write a newspaper article you needed a human being with specific skills—and maybe an advanced degree or two. These days, high-level tasks are increasingly being handled by algorithms that can do precise work not only with speed but also with nuance. These “bots” started with human programming and logic, but now their reach extends beyond what their creators ever expected.

In this fascinating, frightening book, Christopher Steiner tells the story of how algorithms took over—and shows why the “bot revolution” is about to spill into every aspect of our lives, often silently, without our knowledge.

The May 2010 “Flash Crash” exposed Wall Street’s reliance on trading bots to the tune of a 998-point market drop and $1 trillion in vanished market value. But that was just the beginning. In Automate This, we meet bots that are driving cars, penning haiku, and writing music mistaken for Bach’s. They listen in on our customer service calls and figure out what Iran would do in the event of a nuclear standoff. There are algorithms that can pick out the most cohesive crew of astronauts for a space mission or identify the next Jeremy Lin. Some can even ingest statistics from baseball games and spit out pitch-perfect sports journalism indistinguishable from that produced by humans.

The interaction of man and machine can make our lives easier. But what will the world look like when algorithms control our hospitals, our roads, our culture, and our national security? What happens to businesses when we automate judgment and eliminate human instinct? And what role will be left for doctors, lawyers, writers, truck drivers, and many others?

Who knows—maybe there’s a bot learning to do your job this minute.If you’ve ever thought to yourself “there has to be a better way to do this,” while using CATIA V5, then know you're probably right. There probably is a better way to complete your tasks you just don't know what it is and you don't have time to read a boring, expensive, thousand page manual on every single CATIA feature. If so, then CATIA V5 Tips and Tricks is for you. No fluff, just CATIA best practices and time savers you can put to use right away. From taming the specification tree to sketching, managing large assemblies and drawings, CATIA V5 Tips and Tricks will save you time and help you avoid common stumbling blocks.

Containing a careful selection of standard and timely topics, the Pocket Book of Integrals and Mathematical Formulas, Fourth Edition presents many numerical and statistical tables, scores of worked examples, and the most useful mathematical formulas for engineering and scientific applications. This fourth edition of a bestseller provides even more comprehensive coverage with the inclusion of several additional topics, all while maintaining its accessible, clear style and handy size.

New to the Fourth Edition

• An expanded chapter on series that covers many fascinating properties of the natural numbers that follow from number theory

• New applications such as geostationary satellite orbits and drug kinetics

• An expanded statistics section that discusses nonlinear regression as well as the normal approximation of the binomial distribution

• Revised format of the table of integrals for easier use of the forms and functions

Easy to Use on the Go

The book addresses a range of areas, from elementary algebra, geometry, matrices, and trigonometry to calculus, vector analysis, differential equations, and statistics. Featuring a convenient, portable size, it is sure to remain in the pockets or on the desks of all who use mathematical formulas and tables of integrals and derivatives.

The Arduino is a simple microcontroller with an easy-to-learn programming environment, while the Raspberry Pi is a tiny Linux-based computer. This book clearly explains the differences between the Arduino and Raspberry Pi, when to use them, and to which purposes each are best suited.

Using these widely available and inexpensive platforms, you'll learn to control LEDs, motors of various types, solenoids, AC (alternating current) devices, heaters, coolers, displays, and sound. You'll even discover how to monitor and control these devices over the Internet. Working with solderless breadboards, you'll get up and running quickly, learning how to make projects that are as fun as they are informative. In Make: Action, you'll learn to:

Build a can crusher using a linear actuator with your ArduinoHave an Arduino water your plantsBuild a personal traffic signal using LEDsMake a random balloon popper with ArduinoCool down your beverages with a thermostatic drink cooler you build yourselfUnderstand and use the PID control algorithmUse Raspberry Pi to create a puppet dance party that moves to your tweets!In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal two?] or three?] semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.

Table of Contents:

Chapter 1. Fourier series

1.1 Basic concepts

1.2 Fourier series and Fourier coefficients

1.3 A minimizing property of the Fourier coefficients. The Riemann-Lebesgue theorem

1.4 Convergence of Fourier series

1.5 The Parseval formula

1.6 Determination of the sum of certain trigonometric series

Chapter 2. Orthogonal systems

2.1 Integration of complex-valued functions of a real variable

2.2 Orthogonal systems

2.3 Complete orthogonal systems

2.4 Integration of Fourier series

2.5 The Gram-Schmidt orthogonalization process

2.6 Sturm-Liouville problems

Chapter 3. Orthogonal polynomials

3.1 The Legendre polynomials

3.2 Legendre series

3.3 The Legendre differential equation. The generating function of the Legendre polynomials

3.4 The Tchebycheff polynomials

3.5 Tchebycheff series

3.6 The Hermite polynomials. The Laguerre polynomials

Chapter 4. Fourier transforms

4.1 Infinite interval of integration

4.2 The Fourier integral formula: a heuristic introduction

4.3 Auxiliary theorems

4.4 Proof of the Fourier integral formula. Fourier transforms

4.5 The convention theorem. The Parseval formula

Chapter 5. Laplace transforms

5.1 Definition of the Laplace transform. Domain. Analyticity

5.2 Inversion formula

5.3 Further properties of Laplace transforms. The convolution theorem

5.4 Applications to ordinary differential equations

Chapter 6. Bessel functions

6.1 The gamma function

6.2 The Bessel differential equation. Bessel functions

6.3 Some particular Bessel functions

6.4 Recursion formulas for the Bessel functions

6.5 Estimation of Bessel functions for large values of x. The zeros of the Bessel functions

6.6 Bessel series

6.7 The generating function of the Bessel functions of integral order

6.8 Neumann functions

Chapter 7. Partial differential equations of first order

7.1 Introduction

7.2 The differential equation of a family of surfaces

7.3 Homogeneous differential equations

7.4 Linear and quasilinear differential equations

Chapter 8. Partial differential equations of second order

8.1 Problems in physics leading to partial differential equations

8.2 Definitions

8.3 The wave equation

8.4 The heat equation

8.5 The Laplace equation

Answers to exercises; Bibliography; Conventions; Symbols; Index

Written on an advanced level, the book is aimed at advanced undergraduates and graduate students with a background in calculus, linear algebra, ordinary differential equations, and complex analysis. Over 260 carefully chosen exercises, with answers, encompass both routing and more challenging problems to help students test their grasp of the material.

Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent study will particularly appreciate the worked examples that appear throughout the text.

One thing these technologies can't do is answer the profound moral issues they raise. Who should be held accountable when they go wrong? What responsibility do we, as creators and users, have for the technologies we build? In A Dangerous Master, ethicist Wendell Wallach tackles such difficult questions with hard-earned authority, imploring both producers and consumers to face the moral ambiguities arising from our rapid technological growth. There is no doubt that scientific research and innovation are a source of promise and productivity, but, as Wallach, argues, technological development is at risk of becoming a juggernaut beyond human control. Examining the players, institutions, and values lobbying against meaningful regulation of everything from autonomous robots to designer drugs, A Dangerous Master proposes solutions for regaining control of our technological destiny.

Wallach's nuanced study offers both stark warnings and hope, navigating both the fears and hype surrounding technological innovations. An engaging, masterful analysis of the elements we must manage in our quest to survive as a species, A Dangerous Master forces us to confront the practical—and moral—purposes of our creations.

Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure.

The book is arranged in four sections, devoted to realizing the universal principle force equals curvature:

Part I: The Euclidean Manifold as a Paradigm

Part II: Ariadne's Thread in Gauge Theory

Part III: Einstein's Theory of Special Relativity

Part IV: Ariadne's Thread in Cohomology

For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum.

Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his mastering of the field and the clarity of presentation (Luis Caffarelli, University of Texas)

It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ...Every graduate student in analysis should read it. (David Jerison, MIT)

I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ...I am very happy with the preparation it provides my students. (Carlos Kenig, University of Chicago)

Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ...An outstanding reference for many aspects of the field. (Rafe Mazzeo, Stanford University.

Provides Basic Transferable Skills for Managing Electrical Power on Ships or on Land

This groundbreaking book is the first volume of its kind to illustrate optimization of all aspects of shipboard electrical power systems. Applying author Mukund Patel’s rare combination of industrial and educational work experiences and insight, it offers solutions to meet the increasing demand for large, fast, efficient, and reconfigurable ships to compete in international markets.

For 30 years, Professor Patel was an engineer for companies including General Electric, Lockheed Martin, and Westinghouse Electric, and in the past 15 years he has been an engineering professor at the U.S. Merchant Marine Academy. That varied experience helped him zero in on the specialized multidimensional knowledge an engineer requires—and that is what sets his book apart.

Compiles Critical, Hard-to-Find Information on Power System Design, Analysis, and Operation

The global shortage of power engineers is not deterring countries from heavily investing in construction of new power plants and grids. Consequent growth in university electrical power programs is satisfying the demand for engineers, but novice graduates require accelerated understanding and practical experience before entering the thriving maritime segment.

Ideal for readers with limited electrical experience, wide-ranging coverage includes power system basics, power generation, electrical machines, power distribution, batteries, and marine industry standards. This book is an invaluable tool for engineers working on ships, as well as in ports, industrial power plants, refineries, and other similar environments.

This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors’ intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs.

The Matlab and Maple software will be available for download from this website shortly.

www.pdecomp.net

Includes a spectrum of applications in science, engineering, applied mathematicsPresents a combination of numerical and analytical methodsProvides transportable computer codes in Matlab and MapleThe pervasiveness and range of capabilities of today’s mobile devices have enabled a wide spectrum of mobile applications that are transforming our daily lives, from smartphones equipped with GPS to integrated mobile sensors that acquire physiological data. Human Activity Recognition: Using Wearable Sensors and Smartphones focuses on the automatic identification of human activities from pervasive wearable sensors—a crucial component for health monitoring and also applicable to other areas, such as entertainment and tactical operations.

Developed from the authors’ nearly four years of rigorous research in the field, the book covers the theory, fundamentals, and applications of human activity recognition (HAR). The authors examine how machine learning and pattern recognition tools help determine a user’s activity during a certain period of time. They propose two systems for performing HAR: Centinela, an offline server-oriented HAR system, and Vigilante, a completely mobile real-time activity recognition system. The book also provides a practical guide to the development of activity recognition applications in the Android framework.

Ingeniously relying on elementary algebra and just a smidgen of calculus, Professor Walker demonstrates how the underlying ideas behind wavelet analysis can be applied to solve significant problems in audio and image processing, as well in biology and medicine.

Nearly twice as long as the original, this new edition provides

· 104 worked examples and 222 exercises, constituting a veritable book of review material

· Two sections on biorthogonal wavelets

· A mini-course on image compression, including a tutorial on arithmetic compression

· Extensive material on image denoising, featuring a rarely covered technique for removing isolated, randomly positioned clutter

· Concise yet complete coverage of the fundamentals of time-frequency analysis, showcasing its application to audio denoising, and musical theory and synthesis

· An introduction to the multiresolution principle, a new mathematical concept in musical theory

· Expanded suggestions for research projects

· An enhanced list of references

· FAWAV: software designed by the author, which allows readers to duplicate described applications and experiment with other ideas.

To keep the book current, Professor Walker has created a supplementary website. This online repository includes ready-to-download software, and sound and image files, as well as access to many of the most important papers in the field.

The first part explores Markov processes and Brownian motion; the stochastic integral and stochastic differential equations; elliptic and parabolic partial differential equations and their relations to stochastic differential equations; the Cameron-Martin-Girsanov theorem; and asymptotic estimates for solutions. The section concludes with a look at recurrent and transient solutions.

Volume 2 begins with an overview of auxiliary results in partial differential equations, followed by chapters on nonattainability, stability and spiraling of solutions; the Dirichlet problem for degenerate elliptic equations; small random perturbations of dynamical systems; and fundamental solutions of degenerate parabolic equations. Final chapters examine stopping time problems and stochastic games and stochastic differential games. Problems appear at the end of each chapter, and a familiarity with elementary probability is the sole prerequisite.

Fundamental theories are introduced in a straightforward way, and state-of-the-art techniques for designing and analyzing engineering systems, including microstructural systems are explained in detail. Case studies are used to demonstrate these theories, methods, techniques and practical applications, and numerous diagrams and tables are used throughout.

The case studies and examples use the commercial software package ABAQUS, but the techniques explained are equally applicable for readers using other applications including NASTRAN, ANSYS, MARC, etc.A practical and accessible guide to this complex, yet important subjectCovers modeling techniques that predict how components will operate and tolerate loads, stresses and strains in reality

The book is divided into three parts. The first introduces the framework for the above-mentioned classification, methodically developing a geometric and topological formulation applicable to all physical laws and properties; the second applies this formulation to a detailed study of particle dynamics, electromagnetism, deformable solids, fluid dynamics, heat conduction, and gravitation. The third part further analyses the general structure of the classification diagram for variables and equations of physical theories.

Suitable for a diverse audience of physicists, engineers, and mathematicians, The Mathematical Structure of Classical and Relativistic Physics offers a valuable resource for studying the physical world. Written at a level accessible to graduate and advanced undergraduate students in mathematical physics, the book can be used as a research monograph across various areas of physics, engineering and mathematics, and as a supplemental text for a broad range of upper-level scientific coursework.

Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible, combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger’s equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems.

The Third Edition is organized around four themes: methods of solution for initial-boundary value problems; applications of partial differential equations; existence and properties of solutions; and the use of software to experiment with graphics and carry out computations. With a primary focus on wave and diffusion processes, Beginning Partial Differential Equations, Third Edition also includes:

Proofs of theorems incorporated within the topical presentation, such as the existence of a solution for the Dirichlet problem The incorporation of Maple™ to perform computations and experiments Unusual applications, such as Poe’s pendulum Advanced topical coverage of special functions, such as Bessel, Legendre polynomials, and spherical harmonics Fourier and Laplace transform techniques to solve important problemsBeginning of Partial Differential Equations, Third Edition is an ideal textbook for upper-undergraduate and first-year graduate-level courses in analysis and applied mathematics, science, and engineering.

As the data deluge continues in today’s world, the need to master data mining, predictive analytics, and business analytics has never been greater. These techniques and tools provide unprecedented insights into data, enabling better decision making and forecasting, and ultimately the solution of increasingly complex problems.

Learn from the Creators of the RapidMiner Software

Written by leaders in the data mining community, including the developers of the RapidMiner software, RapidMiner: Data Mining Use Cases and Business Analytics Applications provides an in-depth introduction to the application of data mining and business analytics techniques and tools in scientific research, medicine, industry, commerce, and diverse other sectors. It presents the most powerful and flexible open source software solutions: RapidMiner and RapidAnalytics. The software and their extensions can be freely downloaded at www.RapidMiner.com.

Understand Each Stage of the Data Mining Process

The book and software tools cover all relevant steps of the data mining process, from data loading, transformation, integration, aggregation, and visualization to automated feature selection, automated parameter and process optimization, and integration with other tools, such as R packages or your IT infrastructure via web services. The book and software also extensively discuss the analysis of unstructured data, including text and image mining.

Easily Implement Analytics Approaches Using RapidMiner and RapidAnalytics

Each chapter describes an application, how to approach it with data mining methods, and how to implement it with RapidMiner and RapidAnalytics. These application-oriented chapters give you not only the necessary analytics to solve problems and tasks, but also reproducible, step-by-step descriptions of using RapidMiner and RapidAnalytics. The case studies serve as blueprints for your own data mining applications, enabling you to effectively solve similar problems.

This book is suitable for researchers and graduate students working in complex approximation and its applications, mathematical analysis and numerical analysis.

The book takes a holistic approach to thinking about the complex systems, providing a deeper understanding of the underlying nature of the system and the vocabulary of systems engineering. The authors give you working knowledge of the processes used to design, build, test, operate, and maintain the systems that we depend on every day. They break down the systems engineering life cycle, describing in the simplest terms what should be done along the development process.

Although there are many facets of systems engineering, it can be explained as focusing on addressing why a system is needed, what the system must do, and then how the system will accomplish the task over the entire life of the system—in that order. This fundamental review covers the processes from beginning to end, in plain language, giving you an overview of systems engineering that you can translate into your work in any field.

The University of Toronto Undergraduate Competition was founded to provide additional competition experience for undergraduates preparing for the Putnam competition, and is particularly useful for the freshman or sophomore undergraduate. Lecturers, instructors, and coaches for mathematics competitions will find this presentation useful. Many of the problems are of intermediate difficulty and relate to the first two years of the undergraduate curriculum. The problems presented may be particularly useful for regular class assignments. Moreover, this text contains problems that lie outside the regular syllabus and may interest students who are eager to learn beyond the classroom.

Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications.

An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage systems such as battery and fast response storage systems are discussed along with application-specific examples. After setting forth the fundamentals, the chapters focus on more complex topics such as modular power electronics, microgrids and smart grids for integrating renewable and distributed energy. Emerging topics such as advanced electric vehicles and distributed control paradigm for power system control are discussed in the last two chapters.

With contributions from subject matter experts, the diagrams and detailed examples provided in each chapter make Power Electronics for Renewable and Distributed Energy Systems a sourcebook for electrical engineers and consultants working to deploy various renewable and distributed energy systems and can serve as a comprehensive guide for the upper-level undergraduates and graduate students across the globe.

This book treats physically-based as well as experimentally-refined engine models for gasoline and diesel engines and uses them to exemplify the design of various advanced control systems. The procedures, from measurements through simulation to calibration on test benches, are systematically described and demonstrated. The treatment spans not only the stationary but also the dynamic behavior of engines. Several new control regimens are detailed, such as multivariable feedforward and feedback control based on nonlinear net models, combustion pressure and HCCI control. Many new results with signal and process model-based fault diagnosis are used to show how on-board fault diagnosis can be considerably improved.

The book is directed at advanced students working in control, electrical, mechanical and mechatronic engineering and will also be useful for practicing engineers in the field of engine and automotive engineering.

Fulfilling emission limits and immunity requirements as well as handling apparently complex cases of incompatibility demands a deeper understanding of the physical interrelations and of Maxwell's theory.

Based on the authors’ experiences, the textbook provides some help in solving such interferential cases.

It contains many illustrative examples and more than 80 exercises with solutions.

Chapters in Part A explain the significant influence of automation on our life, on individuals, organizations, and society, in economic terms and context, and impacts of precision, accuracy and reliability with automatic and automated equipment and operations. The theoretical and scientific knowledge about the human role in automation is covered in Part B from the human-oriented and human-centered aspects of automation to be applied and operated by humans, to the human role as supervisor and intelligent controller of automation systems and platforms. This part concludes with analysis and discussion on the limits of automation to the best of our current understanding. Covering automation design from theory to building automation machines, systems, and systems-of-systems , Part C explains the fundamental elements of mechatronics, sensors, robots, and other components useful for automation, and how they are combined with control and automation software, including models and techniques for automation software engineering, and the automation of the design process itself. Chapters in Part D cover the basic design requirements for the automation and illustrate examples of how the challenging issues can be solved for the deign and integration of automation with respect to its main purpose: Continuous and discrete processes and industries, design techniques, criteria and algorithms for flow lines, and integrated automation. Concluding this part is the design for safety of automation, and of automation for safety. The main aspects of automation management are covered by the chapters in Part E: Cost effectiveness and economic reasons for the design, feasibility analysis, implementation, rationalization, use, and maintenance of particular automation; performance and functionality measures and criteria. Related also are the issues of how to manage automatically and control maintenance, replacement, and upgrading. Part F, industrial automation, begins with explanation of machine tool automation, including various types of numerical control (NC), flexible, and precision machinery for production, manufacturing, and assembly, digital and virtual industrial production, to detailed design, guidelines and application of automation in the principal industries, from aerospace and automotive to semi-conductor, mining, food, paper and wood industries. Chapters are also devoted to the design, control and operation of functions common to all industrial automation. Infrastructures and service automation are covered in Part G and it is explained how automation is designed, selected, integrated, justified and applied, its challenges and emerging trends in those areas and in the construction of structures, roads and bridges; of smart buildings, smart roads and intelligent vehicles; cleaning of surfaces, tunnels and sewers; land, air, and space transportation; information, knowledge, learning, training, and library services; and in sports and entertainment. Automation in medical and healthcare systems is covered in Part H and shows the exponential penetration and main contributions of automation to the health and medical well being of individuals and societies. First, the scientific and theoretical foundations of control and automation in biological and biomedical systems and mechanisms are explained, then specific areas are described and analyzed. Available, proven, and emerging automation techniques in healthcare delivery and elimination of hospital and other medical errors are also addressed. Finally, Part I, Home, Office, and Enterprise Automation is about functional automation areas at home, in the office, and in general enterprises, including multi-enterprise networks. Chapters also cover the automation theories, techniques and practice, design, operation, challenges and emerging trends in education and learning, banking, commerce. An important dimension of the material compiled for this part is that it is useful for all other functional areas of automation. The concluding part of this Springer Handbook contains figures and tables with statistical information and summaries about automation applications and impacts in four main areas: industrial automation, service automation, healthcare automation, and financial and e-commerce automation. A rich list of associations and of periodical publications around the world that focus on automation in its variety of related fields is also included for the benefit of readers worldwide.

Throughout the 94 chapters, divided into ten main parts, with 124 tables, 1005 figures, the 168 co-authors present proven knowledge, original analysis, best practices and authoritative expertise.

Plenty of case studies, creative examples and unique illustrations, covering topics of automation from the basics and fundamentals to advanced techniques, cases and theories will serve the readers and benefit the students and researchers, engineers and managers, inventors, investors and developers.

The book covers systems and systems engineering, systems methods, models, and analytical techniques as well as systems management and control methods. It discusses systems concepts, emphasizing system life cycle, and includes coverage of systems design processes and the major activities involved. It offers hands-on exercises after each chapter, giving students a solid understanding of system requirements, and uses a software package (CORE) to introduce the requirement management process.

Designed for readers with a wide range of backgrounds, the book enables students to learn about systems and systems engineering, and, more specifically, to be able to use and apply the models and methods in the systems engineering field. The author has integrated feedback from students with materials used in teaching for many years, making the book especially approachable to non-engineering students with no prior exposure to this subject. Engineering students, on the other hand, will also benefit from the clear, concise coverage this book provides as well as the relevant analysis models and techniques.

Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and differential equations in the complex field. The author discusses only ordinary differential equations, excluding coverage of the methods of integration and stressing the importance of reading the properties of the integrals directly from the equations. An extensive bibliography and helpful indexes conclude the text.

Strengthening the analytic flavor of the book, this Second Edition:

Features a new chapter on analytic combinatorics and new sections on advanced applications of generating functions Demonstrates powerful techniques that do not require the residue theorem or complex integration Adds new exercises to all chapters, significantly extending coverage of the given topicsIntroduction to Enumerative and Analytic Combinatorics, Second Edition makes combinatorics more accessible, increasing interest in this rapidly expanding field.

On the other hand, connectionist (artificial neural network) formulations are attractive for the computation of inverse kinematics and dynamics of robots, because they can be trained for this purpose without explicit programming. Some of the computational advantages and problems of this approach are also presented.

For any serious student of robotics, Neural Networks in Robotics provides an indispensable reference to the work of major researchers in the field. Similarly, since robotics is an outstanding application area for artificial neural networks, Neural Networks in Robotics is equally important to workers in connectionism and to students for sensormonitor control in living systems.