Similar

Expanded and revised to cover developments in the field over the past 17 years, and now reprinted to correct errors in the prior printing, Phase Transformation in Metals and Alloys, Third Edition provides information and examples that better illustrate the engineering relevance of this topic. It supplies a comprehensive overview of specific types of phase transformations, supplemented by practical case studies of engineering alloys.

New in the Third Edition:

Computer-aided calculation of phase diagrams Recent developments in metallic glasses The Scheil method of calculating a CCT diagram from a TTT diagram Expanded treatment of the nucleation and growth of polygonal ferrite and bainite New case studies covering copper precipitation hardening of very low carbon bainitic steel and very fine carbide-free bainite Detailed treatment of strain-induced martensite provides a theoretical background to transformation-induced plasticity (TRIP) steels

Unique Presentation Links Theory to Application
Adding new case studies, detailed examples, and exercises drawn from current applications, the third edition keeps the previous editions’ popular easy-to -follow style and excellent mix of basic and advanced information, making it ideal for those new to the field. The book’s unique presentation links basic understanding of theory with application in a gradually progressive yet exciting manner. Based on the author’s teaching notes, the book takes a pedagogical approach and provides examples for applications and problems that can be readily used for exercises.

PowerPoint© illustrations available with qualifying course adoptions

Designed as an undergraduate-level textbook in Chemical Engineering, this student-friendly, thoroughly class-room tested book, now in its second edition, continues to provide an in-depth analysis of chemical engineering thermodynamics. The book has been so organized that it gives comprehensive coverage of basic concepts and applications of the laws of thermodynamics in the initial chapters, while the later chapters focus at length on important areas of study falling under the realm of chemical thermodynamics. The reader is thus introduced to a thorough analysis of the fundamental laws of thermodynamics as well as their applications to practical situations. This is followed by a detailed discussion on relationships among thermodynamic properties and an exhaustive treatment on the thermodynamic properties of solutions. The role of phase equilibrium thermodynamics in design, analysis, and operation of chemical separation methods is also deftly dealt with. Finally, the chemical reaction equilibria are skillfully explained. Besides numerous illustrations, the book contains over 200 worked examples, over 400 exercise problems (all with answers) and several objective-type questions, which enable students to gain an in-depth understanding of the concepts and theory discussed. The book will also be a useful text for students pursuing courses in chemical engineering-related branches such as polymer engineering, petroleum engineering, and safety and environmental engineering. New to This Edition • More Example Problems and Exercise Questions in each chapter • Updated section on Vapour–Liquid Equilibrium in Chapter 8 to highlight the significance of equations of state approach • GATE Questions up to 2012 with answers
The growing demand for more sustainable materials has led to increased research on the properties of natural rubber. Chemistry, Manufacture and Applications of Natural Rubber summarizes this research and its significance for the industrial applications of natural rubber.

Chapters in part one explore the properties and processing of natural rubber, including the biosynthesis of natural rubber in different rubber-producing species, chemical modification of natural rubber for improved performance, and the effect of strain-induced crystallization on the physical properties of natural rubber. Further chapters highlight hydrophobic and hydrophilic silica-filled cross-linked natural rubber and computer simulation of network formation in natural rubber. Part two focusses on applications of natural rubber, including eco-friendly bio-composites using natural rubber matrices and reinforcements, soft bio-composites from natural rubber and marine products, natural rubber for the tire industry, the application of epoxidized natural rubber in pressure sensitive adhesives (PSAs), and the use of natural rubber for vibration isolation and earthquake protection of structures. Finally, chapters in part three consider environmental and safety issues associated with natural rubber, including improving the sustainable development of natural rubber, the recycling of natural and synthetic isoprene rubbers and of sulfur cross-linked natural rubber, and recent research on natural rubber latex allergy.

Chemistry, Manufacture and Applications of Natural Rubber is a comprehensive resource for academics, chemists, chemical engineers, mechanical engineers, and other professionals in the rubber industry, as well as those industries, including automotive, civil, and medical engineering, using natural rubber products.

An updated review with systematic and comprehensive coverage of natural rubbersCovers a broad range of topics, including the chemistry, processing, sustainability, and applications of natural rubbersCoverage of the best international research, including key experts from Asia, the United States, South America, and Europe
Practical Aspects of Computational Chemistry II: An Overview of the Last Two Decades and Current Trends gathers the discussion of advances made within the last 20 years by well-known experts in the area of theoretical and computational chemistry and physics. The title reflects the celebration of the twentieth anniversary of the “Conference on Current Trends in Computational Chemistry (CCTCC)” to success of which all authors contributed.

Starting with the recent development of modeling of solvation effect using the Polarizable Continuum Model (PCM) at the Coupled-Cluster level and the effects of extreme pressure on the molecular properties within the PCM framework, this volume focuses on the association/dissociation of ion pairs in binary solvent mixtures, application of graph theory to determine the all possible structures and temperature-dependent distribution of water cluster, generalized-ensemble algorithms for the complex molecular simulation, QM/MD based investigation of formation of different nanostructures under nonequilibrium conditions, quantum mechanical study of chemical reactivity of carbon nanotube, covalent functionalization of single walled-carbon nanotube, designing of functional materials, importance of long-range dispersion interaction to study nanomaterials, recent advances in QSPR/QSAR analysis of nitrocompounds, prediction of physico-chemical properties of energetic materials, electronic structure and properties of 3d transition metal dimers, the s-bond activation reactions by transition metal complexes, theoretical modeling of environmental mercury depletion reaction, organolithium chemistry and computational modeling of low-energy electron induced DNA damage.
Practical Aspects of Computational Chemistry II: An Overview of the Last Two Decades and Current Trends is aimed at theoretical and computational chemists, physical chemists, materials scientists, and particularly those who are eager to apply computational chemistry methods to problems of chemical and physical importance. This book provides valuable information to undergraduate, graduate, and PhD students as well as to established researchers.

Practical Aspects of Computational Chemistry II: An Overview of the Last Two Decades and Current Trends is aimed at theoretical and computational chemists, physical chemists, materials scientists, and particularly those who are eager to apply computational chemistry methods to problems of chemical and physical importance. This book provides valuable information to undergraduate, graduate, and PhD students as well as to established researchers.

Hydrothermal and Supercritical Water Processes presents an overview on the properties and applications of water at elevated temperatures and pressures. It combines fundamentals with production process aspects. Water is an extraordinary substance. At elevated temperatures (and pressures) its properties change dramatically due to the modifications of the molecular structure of bulk water that varies from a stable three-dimensional network, formed by hydrogen bonds at low and moderate temperatures, to an assembly of separated polar water molecules at high and supercritical temperatures. With varying pressure and temperature, water is turned from a solvent for ionic species to a solvent for polar and non-polar substances. This variability and an enhanced reactivity of water have led to many practical applications and to even more research activities, related to such areas as energy transfer, extraction of functional molecules, unique chemical reactions, biomass conversion and fuel materials processing, destruction of dangerous compounds and recycling of useful ones, growth of monolithic crystals, and preparation of metallic nanoparticles.

This book provides an introduction into the wide range of activities that are possible in aqueous mixtures. It is organized to facilitate understanding of the main features, outlines the main applications, and gives access to further information

Summarizes fundamental properties of water for engineering applicationsCompares process and reactor designsEvaluates processes from thermodynamic, economic, and social impact viewpoints
Practical Aspects of Computational Chemistry I: An Overview of the Last Two Decades and Current Trends gathers the advances made within the last 20 years by well-known experts in the area of theoretical and computational chemistry and physics. The title itself reflects the celebration of the twentieth anniversary of the “Conference on Current Trends in Computational Chemistry (CCTCC)” to which all authors have participated and contributed to its success.

This volume poses (and answers) important questions of interest to the computational chemistry community and beyond. What is the historical background of the “Structural Chemistry”? Is there any way to avoid the problem of intruder state in the multi-reference formulation? What is the recent progress on multi-reference coupled cluster theory? Starting with a historical account of structural chemistry, the book focuses on the recent advances made in promising theories such as many body Brillouin-Wigner theory, multireference state-specific coupled cluster theory, relativistic effect in chemistry, linear and nonlinear optical properties of molecules, solution to Kohn-Sham problem, electronic structure of solid state materials, development of model core potential, quantum Monte Carlo method, nano and molecular electronics, dynamics of photodimerization and excited states, intermolecular interactions, hydrogen bonding and non-hydrogen bonding interactions, conformational flexibility, metal cations in zeolite catalyst and interaction of nucleic acid bases with minerals.

Practical Aspects of Computational Chemistry I: An Overview of the Last Two Decades and Current Trends is aimed at theoretical and computational chemists, physical chemists, materials scientists, and particularly those who are eager to apply computational chemistry methods to problem of chemical and physical importance. This book will provide valuable information to undergraduate, graduate, and PhD students as well as to established researchers.

A practical introduction to orbital interaction theory and its applications in modern organic chemistry Orbital interaction theory is a conceptual construct that lies at the very heart of modern organic chemistry. Comprising a comprehensive set of principles for explaining chemical reactivity, orbital interaction theory originates in a rigorous theory of electronic structure that also provides the basis for the powerful computational models and techniques with which chemists seek to describe and exploit the structures and thermodynamic and kinetic stabilities of molecules. Orbital Interaction Theory of Organic Chemistry, Second Edition introduces students to the fascinating world of organic chemistry at the mechanistic level with a thoroughly self-contained, well-integrated exposition of orbital interaction theory and its applications in modern organic chemistry. Professor Rauk reviews the concepts of symmetry and orbital theory, and explains reactivity in common functional groups and reactive intermediates in terms of orbital interaction theory. Aided by numerous examples and worked problems, he guides readers through basic chemistry concepts, such as acid and base strength, nucleophilicity, electrophilicity, and thermal stability (in terms of orbital interactions), and describes various computational models for describing those interactions. Updated and expanded, this latest edition of Orbital Interaction Theory of Organic Chemistry includes a completely new chapter on organometallics, increased coverage of density functional theory, many new application examples, and worked problems. The text is complemented by an interactive computer program that displays orbitals graphically and is available through a link to a Web site. Orbital Interaction Theory of Organic Chemistry, Second Edition is an excellent text for advanced-level undergraduate and graduate students in organic chemistry. It is also a valuable working resource for professional chemists seeking guidance on interpreting the quantitative data produced by modern computational chemists.
Aimed at senior undergraduates and first-year graduate students, this book offers a principles-based approach to inorganic chemistry that, unlike other texts, uses chemical applications of group theory and molecular orbital theory throughout as an underlying framework. This highly physical approach allows students to derive the greatest benefit of topics such as molecular orbital acid-base theory, band theory of solids, and inorganic photochemistry, to name a few.

Takes a principles-based, group and molecular orbital theory approach to inorganic chemistry The first inorganic chemistry textbook to provide a thorough treatment of group theory, a topic usually relegated to only one or two chapters of texts, giving it only a cursory overview Covers atomic and molecular term symbols, symmetry coordinates in vibrational spectroscopy using the projection operator method, polyatomic MO theory, band theory, and Tanabe-Sugano diagrams Includes a heavy dose of group theory in the primary inorganic textbook, most of the pedagogical benefits of integration and reinforcement of this material in the treatment of other topics, such as frontier MO acid--base theory, band theory of solids, inorganic photochemistry, the Jahn-Teller effect, and Wade's rules are fully realized Very physical in nature compare to other textbooks in the field, taking the time to go through mathematical derivations and to compare and contrast different theories of bonding in order to allow for a more rigorous treatment of their application to molecular structure, bonding, and spectroscopy Informal and engaging writing style; worked examples throughout the text; unanswered problems in every chapter; contains a generous use of informative, colorful illustrations
Formerly, the catalytic use of zeolites was exclusive to the field of acid catalysis. Nowadays, zeolites also find applications as catalysts in a wide array of chemical reactions such as; base catalyzed reactions, Redox reactions and catalytic reactions on transition metals and their complexes in confined environments. The concepts of Brønsted or Lewis acid-base pairs are adequately illustrated in the literature and well-understood in terms of structural and electronic properties of zeolites. By contrast, properties of chemically modified silicates, aluminosilicates and aluminophosphates have not yet been fully explored. The list of oxydo-reduction reactions performed in the presence of these new materials is growing as demonstrated by the selective catalytic reduction of nitrogen oxides or the numerous oxidations employing hydrogen peroxide. Much effort is currently being made to get a better insight into the nature of the sites involved. The zeolite lattice may also be used as a host for encapsulated complexes or metallic clusters allowing the control of nuclearity of these active species and the steric constraints imposed on the reactants. Molecular sieve and shape selectivity effects have also constituted fascinating aspects of zeolite properties. Recent developments leading to increasingly large pore sizes with VPI-5, cloverite and more recently mesoporous molecular sieves have broadened the spectrum of these applications. Indeed, larger and larger reactant and product molecules can be accommodated in these lattices. These new adsorbant/adsorbate systems create additional needs for experimental data and theoretical descriptions of transport properties, in particular of mono- and multi-components diffusion coefficients in the zeolite pore lattice.

All these themes, representing the forefront and current trends in zeolite research, were discussed in the submitted papers to the symposium and are widely represented in the selected papers contained in this volume. A feature common to most of these contributions is the combined use of a variety of analytical techniques. Some of these techniques are at the frontier of the latest analytical developments such as multiple scattering EXAFS and bidimensional MAS-NMR.

th The Who’s Who in Fluorescence 2009 is the 7 volume of the Who’s who series. The previous six volumes (2003 – 2008) have been very well received by the fluorescence community, with 1000’s of copies being distributed around the world, through conferences and workshops, as well as through internet book sites. In addition, the Institute of Fluorescence (http://theinstituteoffluorescence.com/) mailed 100’s of copies of the 2008 volume to contributors around the world. This new 2009 volume features some 419 entries from no fewer than 41 countries worldwide, as compared to 418 entries (38 different countries) in 2008 and 405 entries in the 2007 volume, respectively. We have received 29 new entries this year, and deleted 25 entries that were not updated by contributors from past years. In 2008, 129 AIM numbers were submitted as compared to 106 in 2007. This year the number has risen again to 136 AIM numbers submitted. This year we also see the introduction of the h-index number listing, a publication statistic provided by the Thompson’s ISI Web of Science. Some 42 contributors provided their h-numbers. In 2009 we also see a continued and strong company support, in light of the current world economic climate, which will enable us to further disseminate the volume in 2009– 2010. In this regard we especially thank the instrumentation companies for their continued support, where without their financial contributions, it is likely that the volume would not be the success it is today.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.