## Similar

Plenty of biographies glamorize Tesla and his eccentricities, but until now none has carefully examined what, how, and why he invented. In this groundbreaking book, W. Bernard Carlson demystifies the legendary inventor, placing him within the cultural and technological context of his time, and focusing on his inventions themselves as well as the creation and maintenance of his celebrity. Drawing on original documents from Tesla's private and public life, Carlson shows how he was an "idealist" inventor who sought the perfect experimental realization of a great idea or principle, and who skillfully sold his inventions to the public through mythmaking and illusion.

This major biography sheds new light on Tesla's visionary approach to invention and the business strategies behind his most important technological breakthroughs.

Whether you are a student struggling to fulfill a math or science requirement, or you are embarking on a career change that requires a new skill set, A Mind for Numbers offers the tools you need to get a better grasp of that intimidating material. Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. She flunked her way through high school math and science courses, before enlisting in the army immediately after graduation. When she saw how her lack of mathematical and technical savvy severely limited her options—both to rise in the military and to explore other careers—she returned to school with a newfound determination to re-tool her brain to master the very subjects that had given her so much trouble throughout her entire life.

In A Mind for Numbers, Dr. Oakley lets us in on the secrets to learning effectively—secrets that even dedicated and successful students wish they’d known earlier. Contrary to popular belief, math requires creative, as well as analytical, thinking. Most people think that there’s only one way to do a problem, when in actuality, there are often a number of different solutions—you just need the creativity to see them. For example, there are more than three hundred different known proofs of the Pythagorean Theorem. In short, studying a problem in a laser-focused way until you reach a solution is not an effective way to learn. Rather, it involves taking the time to step away from a problem and allow the more relaxed and creative part of the brain to take over. The learning strategies in this book apply not only to math and science, but to any subject in which we struggle. We all have what it takes to excel in areas that don't seem to come naturally to us at first, and learning them does not have to be as painful as we might think!

From the Trade Paperback edition.

The math we learn in school can seem like a dull set of rules, laid down by the ancients and not to be questioned. In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it.

Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer?

How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God.

Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.

In concise, high-def videos, various skills and techniques are demonstrated and explained. These cover topics for the novice, such as mounting and cleaning of optics, as well as for the more advanced learner, such as balanced detection, and lock-in amplifiers.

Various interactive widgets let you simulate the experience of aligning a laser beam to an optical system, aligning an interferometer to get fringes, or adjust a Fabry-Perot cavity while observing the mode spectrum. Other tools help you quickly find the Gaussian beam parameters of your laser from measured beam radii, and to calculate the position of a lens or pair of lenses to mode match a laser to a cavity.

For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions.

And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.

The book begins at the simplest level, develops the basics, and reinforces fundamentals, ensuring a solid foundation in the principles and methods of physics. It provides an ideal introduction for college-level students of physics, chemistry, and engineering; for motivated AP Physics students; and for general readers interested in advances in the sciences.

"Now a new laboratory bible for optics researchers has joined the list: it is Phil Hobbs's Building Electro-Optical Systems: Making It All Work."

—Tony Siegman, Optics & Photonics News

Building a modern electro-optical instrument may be the most interdisciplinary job in all of engineering. Be it a DVD player or a laboratory one-off, it involves physics, electrical engineering, optical engineering, and computer science interacting in complex ways. This book will help all kinds of technical people sort through the complexity and build electro-optical systems that just work, with maximum insight and minimum trial and error.

Written in an engaging and conversational style, this Second Edition has been updated and expanded over the previous edition to reflect technical advances and a great many conversations with working designers. Key features of this new edition include:

Expanded coverage of detectors, lasers, photon budgets, signal processing scheme planning, and front ends Coverage of everything from basic theory and measurement principles to design debugging and integration of optical and electronic systems Supplementary material is available on an ftp site, including an additional chapter on thermal Control and Chapter problems highly relevant to real-world design Extensive coverage of high performance optical detection and laser noise cancellationEach chapter is full of useful lore from the author's years of experience building advanced instruments. For more background, an appendix lists 100 good books in all relevant areas, introductory as well as advanced. Building Electro-Optical Systems: Making It All Work, Second Edition is essential reading for researchers, students, and professionals who have systems to build.

Starting with chapters on vector analysis and electrostatics, the text covers electrostatic boundary value problems, formal and microscopic theories of dielectric electrostatics and of magnetism and matter, electrostatic energy, steady currents, and induction. Additional topics include magnetic energy, circuits with nonsteady currents, Maxwell's equations, radiation, electromagnetic boundary value problems, and the special theory of relativity. Exercises appear at the end of each chapter and answers to odd-numbered problems are included in one of several helpful appendixes.

Nikola Tesla—a poet of invention—left behind a vast and intriguing legacy. He was a scientist, physicist, mathematician, electrical engineer, and extensively published author who spent his last decades scraping for funding for celestial projects and living out his final days in penurious solitude with a pigeon.

This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced in the second edition, including:

Analysis of the Vander Pol oscillator model of laser light Coverage on coherence tomography and coherence multiplexing of fiber sensors An expansion of the chapter on imaging with partially coherent light, including several new examples An expanded section on speckle and its properties New sections on the cross-spectrum and bispectrum techniques for obtaining images free from atmospheric distortions A new section on imaging through atmospheric turbulence using coherent light The addition of the effects of “read noise” to the discussions of limitations encountered in detecting very weak optical signals A number of new problems and many new references have been added Statistical Optics, Second Edition is written for researchers and engineering students interested in optics, physicists and chemists, as well as graduate level courses in a University Engineering or Physics Department.Divided into four sections, the book covers fundaments of IR detection, IR thermal detectors, IR photon detectors, and focal plane arrays. It begins with a tutorial introduction to essential of different types of IR detectors and systems. The author explores the theory and technology of different thermal detectors and then moves on to the theory and technology of photon detectors. He concludes his treatment with a discussion of IR focal plane arrays where relations between performance of detector array and infrared system quality are considered.

New to the Second Edition:

Fundamentals of IR detection, radiometry, and flux-transfer issues needed for IR detector and system analysis Major achievements and trends in the development of IR detectors Novel uncooled detectors such as cantilever, antenna, and optically coupled detectors Type II superlattice detectors Quantum dot IR detectors Terahertz (THz) arrays and new generation of IR detectors, so-called third generation detectors

The author accomplishes the difficult task of making the information accessible to a wide readership. A comprehensive analysis of the latest developments in IR detector technology and basic insight into the fundamental processes important to evolving detection techniques, the book provides the most complete and up-to-date resource of its kind, including a summary of useful data, guide to the literature, and overview of applications.

As digital devices continue to be produced at increasingly lower costs and with higher speeds, the need for effective electromagnetic compatibility (EMC) design practices has become more critical than ever to avoid unnecessary costs in bringing products into compliance with governmental regulations. The Second Edition of this landmark text has been thoroughly updated and revised to reflect these major developments that affect both academia and the electronics industry. Readers familiar with the First Edition will find much new material, including:

* Latest U.S. and international regulatory requirements

* PSpice used throughout the textbook to simulate EMC analysis solutions

* Methods of designing for Signal Integrity

* Fortran programs for the simulation of Crosstalk supplied on a CD

* OrCAD(r) PSpice(r) Release 10.0 and Version 8 Demo Edition software supplied on a CD

* The final chapter on System Design for EMC completely rewritten

* The chapter on Crosstalk rewritten to simplify the mathematics

Detailed, worked-out examples are now included throughout the text. In addition, review exercises are now included following the discussion of each important topic to help readers assess their grasp of the material. Several appendices are new to this edition including Phasor Analysis of Electric Circuits, The Electromagnetic Field Equations and Waves, Computer Codes for Calculating the Per-Unit-Length Parameters and Crosstalk of Multiconductor Transmission Lines, and a SPICE (PSPICE) tutorial.

Now thoroughly updated, the Second Edition of Introduction to Electromagnetic Compatibility remains the textbook of choice for university/college EMC courses as well as a reference for EMC design engineers.

An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

This new version of Barrett's book has been updated for today's world with annotations and updates from Windell Oskay of Evil Mad Scientist Laboratories, including extensive notes about modern safety practices, suggestions on where to find the parts you need, and tips for building upon Barrett's ideas with modern technology. With this book, you'll be ready to take on your own scientific explorations at school, work, or home.

Dr. Kock's lucid introduction to lasers and holography has now been revised and updated for a second edition. It begins with a clear discussion of wave patterns and coherence. Then the development of lasers is summarized, along with the phenomenon of wave diffraction. Finally, the important subjects of zone plates and the properties of holograms are skillfully described. A new, concluding chapter brings the story up to the present, with a survey of recent advances in such areas as viewing holograms, hologram computer memories, liquid surface holography, synthetic-aperture radar and sonar, large new lasers, fiber optics, etc.

Using language that can be readily understood by high school and junior high school students, Dr. Kock has written a brief, yet authoritative volume that should satisfy anyone's curiosity about this burgeoning field. The remarkable discoveries that have already occurred are only a prelude to an even more remarkable future. 84 illustrations, including 8 new to this edition. New preface. Suggested (1981) additional reading. Index.

Amateur astronomers are always contemplating the "next telescope up" and this will point the way to the most suitable instrument to which they should aspire. Similarly, those who are buying their first telescope – and these days not necessarily a low-cost one – will be able to compare and contrast different types and makes.

Jim Mullaney is an astronomy writer, lecturer and consultant who has published more than 500 articles and five books: he has also been an editor for Sky & Telescope, Astronomy, and Star & Sky magazines. One of the contributors to Carl Sagan’s award-winning Cosmos PBS-Television series, his work has received recognition from such notables as Sir Arthur Clarke, Johnny Carson, Ray Bradbury, Dr. Wernher von Braun, and one of his former students – NASA scientist/astronaut Dr. Jay Apt. He is probably the ideal person to write this book, containing as it does a directory of instruments offered by all the major manufacturers.

This exciting, upbeat new guide provides an extensive overview of binoculars and telescopes. It includes detailed up-to-date information on sources, selection and use of virtually every major type, brand and model of such instruments on today’s market – truly an invaluable treasure-trove of information and helpful advice for all amateur astronomers. Also includes details on the the latest released telescope lines, e.g., the 10-, 12-, 14- and 16-inch aperture models of the Meade LX-R series.

The basic objective of this work is to provide a comprehensive overview of the properties of the hard and soft magnetic materials relevant to applications and of thoroughly discussing the modern methodologies for employed in the measurement of these properties. The balance of these topics results in a complete text on the topic, which will be invaluable to researchers, students and practitioners in industry. It will be of significant interest not only to scientists working in the fields of power engineering and materials science but also to specialists in measurement who be able to easily find all the information they need.

Comprehensive overview of the properties of the hard and soft magnetic materialsProvides applications and discusses thoroughly the modern methodologies for employed in the measurement of these propertiesProvides the latest up-to-date works on the measurement of magnetic materialsThis book will be mandatory reading for anyone working on the foundations of modern devices such as free electron lasers, plasma accelerators, synchroton sources and other modern sources of bright, coherent radiation with high spectral density.

In this simple, descriptive treatment of Tesla's work:

- We start with the analysis of Tesla's experiment in his US patent 787412, providing explanations for his lower bounds, requirements, and superluminal speeds. Modes of operation of Tesla transformer are analyzed, and the true nature of the so-called Tesla-wave explained, considering what renders it to be the most significant technological discovery to date.

- We recognize that the very discovery of radio is a witness to the physical existence of invisible, exclusively 3-dimensional worlds, and spherical potential waves in a fully three-dimensional imaginary space are a fundamental phenomenon and physical reality.

- We progress to discuss implications and applications, and claim that properly constructed radio waves do not travel through our visible domain, allowing for efficient wireless energy transfer irrespective of distance.

- Finally, concentrated in one of the last of the 12 chapters, we present a concise mathematical treatment based on Maxwell's equations in characterizing the Tesla effect.

Redefining the thinking outside-the-box and challenging the state of the art in modern physics, I submit this innovation to your careful scrutiny. This descriptive work is accessible to any reader, including physics and mathematics scholars skilled in the art. The combined experience in the above treatment yields a novel, simple, yet comprehensive view of the spatial construction of the universe, above and beyond the everyday three-dimensional reality experienced by physical senses.

No sensationalist descriptions involving time travel, weapons of global destruction, Soviet military research, mind alteration, age reversal, UFOs, aliens, and a myriad of other manufactured and unrelated topics, are contained in this text. No strings, tensors, elementary particles, or any of the traditional special relativity effects are associated with Tesla waves, and are not mentioned in this text. The most significant problem in theoretical interpretation of Tesla's ideas to date - was the avoidance of the most obvious solution.

Read this flagship book, and discover that the universe is so small that we are all intimately connected through a countably infinite set of pathways of ever decreasing length, and that it is yet so large, that it escapes our senses.

Universe is a lattice of countably infinitely many, mutually embedded, distinct, experientially equivalent, fully-fledged three-dimensional worlds, with all corresponding lengths ratio of Pi/2. Illustrated in C^3 , universe is simply a sphere of radius zero.

Maxwell made numerous other contributions to the advancement of science, but the greatest work of his life was devoted to electricity. An Elementary Treatise on Electricity appeared at a time when very few books on electrical measurements were available to students, and its compact treatment not only elucidates the theory of electricity but also serves to develop electrical ideas in readers' minds. The author describes experiments that demonstrate the principal facts relating an electric charge as a quantity capable of being measured, deductions from these facts, and the exhibition of electrical phenomena.

This volume, published posthumously from Maxwell's lecture notes at the Cavendish Laboratory — which he founded at the University of Cambridge — is supplemented by a selection of articles from his landmark book, Electricity and Magnetism. A classic of science, this volume is an eminently suitable text for upper-level undergraduates and graduate students.

Laser Fabrication and Machining of Materials introduces readers to the fundamental properties and physical phenomena of laser machining and its applications on the macro, micro, and nano scales. Examples of existing, emerging, and potential techniques are discussed, giving students and practicing engineers alike the opportunity to expand their use of lasers in such disciplines as mechanical processes, electronics, materials, and manufacturing.

Each topic is carefully introduced at three levels to aid student understanding. First, theoretical ideas and background information are discussed, then explanations of mathematical solutions follow and finally practical solutions are presented using MATLAB. The content includes:

A compendium of equations and numerical data required by the modern colour and imaging scientist. Numerous examples of solutions and algorithms for a wide-range of computational problems in colour science. Example scripts using the MATLAB programming language.This 2nd edition contains substantial new and revised material, including three innovative chapters on colour imaging, psychophysical methods, and physiological colour spaces; the MATLAB toolbox has been extended with a professional, optimized, toolbox to go alongside the current teaching toolbox; and a java toolbox has been added which will interest users who are writing web applications and/or applets or mobile phone applications.

Computational Colour Science Using MATLAB 2nd Edition is an invaluable resource for students taking courses in colour science, colour chemistry and colour physics as well as technicians and researchers working in the area. In addition, it acts a useful reference for professionals and researchers working in colour dependent industries such as textiles, paints, print & electronic imaging.

Review from First Edition:

“…highly recommended as a concise introduction to the practicalities of colour science…” (Color Technology, 2004)

Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter on supercontinuum generation in optical fibers.

Continues to be industry bestseller providing unique source of comprehensive coverage on the subject of nonlinear fiber optics Updated coverage of intrapulse Raman scattering, four-wave mixing, and Harmonic GenerationIncludes a new chapter excusively devoted to supercontinuum generation in optical fibersAn adaptive lens is a lens whose shape has been changed to a different focal length by an external stimulus such as pressure, electric field, magnetic field, or temperature. Introduction to Adaptive Lenses is the first book ever to address all of the fundamental operation principles, device characteristics, and potential applications of various types of adaptive lenses.

This comprehensive book covers basic material properties, device structures and performance, image processing and zooming, optical communications, and biomedical imaging. Readers will find homework problems and solutions included at the end of each chapter—and based on the described device structures, they will have the knowledge to fabricate adaptive lenses for practical applications or develop new adaptive devices or concepts for advanced investigation.

Introduction to Adaptive Lenses includes chapters on:

Optical lenses

Elastomeric membrane lenses

Electro-wetting lenses

Dielectrophoretic lenses

Mechanical-wetting lenses

Liquid crystal lenses

This is an important reference for optical engineers, research scientists, graduate students, and undergraduate seniors.

Nonlinear optics is essentially the study of the interaction of strong laser light with matter. It lies at the basis of the field of photonics, the use of light fields to control other light fields and to perform logical operations. Some of the topics of this book include the fundamentals and applications of optical systems based on the nonlinear interaction of light with matter. Topics to be treated include: mechanisms of optical nonlinearity, second-harmonic and sum- and difference-frequency generation, photonics and optical logic, optical self-action effects including self-focusing and optical soliton formation, optical phase conjugation, stimulated Brillouin and stimulated Raman scattering, and selection criteria of nonlinear optical materials.

· Covers all the latest topics and technology in this ever-evolving area of study that forms the backbone of the major applications of optical technology

· Offers first-rate instructive style making it ideal for self-study

· Emphasizes the fundamentals of non-linear optics rather than focus on particular applications that are constantly changing

This book explains the basic principles of spectroscopy, including the fundamental optical constraints and all mathematical aspects needed to understand the working principles in detail. It covers the complete theoretical and practical design of standard and Echelle spectrographs. Readers are guided through all necessary calculations, enabling them to engage in spectrograph design. The book also examines data acquisition with CCD cameras and fiber optics, as well as the constraints of specific data reduction and possible sources of error. In closing it briefly highlights some main aspects of the research on massive stars and spectropolarimetry as an extension of spectroscopy. The book offers a comprehensive introduction to spectroscopy for students of physics and astronomy, as well as a valuable resource for amateur astronomers interested in learning the principles of spectroscopy and spectrograph design.

Features include:

Comprehensive and authoritative treatments of the latest research in this area of nanophotonics, written by the leading researchersAccounts of numerous microfluidics, nanofabrication, quantum informatics and optical manipulation applicationsCoverage that fully spans the subject area, from fundamental theory and simulations to experimental methods and resultsGraduate students and established researchers in academia, national laboratories and industry will find this book an invaluable guide to the latest technologies in this rapidly developing field.

Comprehensive and definitive source of the latest research in nanotechnology written by the leading people in the fieldFrom theory to applications - all is presented in detailEditor is Chair of the SPIE Nanotechnology Technical Group and is leading the way in generation and manipulation of complex beamsThe book covers topics such as Fourier spectrometry and field-widened interferometers; the applications of Fourier transform spectrometry; transmission studies on the different phases of matter; asymmetric interferometry; and the measurement of complex indices of refraction. Also included in the book are the areas of cryogenic instrumentation; Hadamard-Transform spectrometry and its related theory; measurement of infrared transient phenomena; and calibration techniques.

The text is applicable for both novices and practitioners in the field of spectrometry, as it can serve as a guide and handbook for the former and reference for the latter.

Classical Electromagnetism in a Nutshell is ideal for a yearlong graduate course and features more than 300 problems, with solutions to many of the advanced ones. Key formulas are given in both SI and Gaussian units; the book includes a discussion of how to convert between them, making it accessible to adherents of both systems.

Offers a complete treatment of classical electromagnetism Emphasizes physical ideas Separates the treatment of electromagnetism in vacuum and material media Presents key formulas in both SI and Gaussian units Covers applications to other areas of physics Includes more than 300 problemsThe book begins with a brief history of the effort to enable the device that generates light through modern organic LEDs and reviews the fundamentals and principles of light prior to a detailed explanation of how LEDs generate different colors. After forming this basic foundation, the book examines the key LEDs in lighting and communications. It then discusses the latest opportunities and advancements in high brightness (HB) LED technology, solid state lighting, and handheld electronic applications.

As we approach a new decade the role of LEDs is literally set to explode, with organic light emitting diodes emerging as a leading next generation technology for electronic displays and lighting. Challenges still exist, including light extraction, luminosity, and white light generation, not to mention non-technical obstacles such as IP disputes and the lack of standards. This book provides a foundation for resolving these issues and developing new applications for LEDs in the promising general illumination market.

This book guides the reader through the mathematics, physics and practical techniques needed to use telescopes (from small amateur models to the larger instruments installed in many colleges) and to observe objects in the sky. Mathematics to around Advanced Placement standard (US) or A level (UK) is assumed, although High School Diploma (US) or GCSE-level (UK) mathematics plus some basic trigonometry will suffice most of the time. Most of the physics and engineering involved is described fully and requires no prior knowledge or experience.

This is a ‘how to’ book that provides the knowledge and background required to understand how and why telescopes work. Equipped with the techniques discussed in this book, the observer will be able to operate with confidence his or her telescope and to optimize its performance for a particular purpose. In principle the observer could calculate his or her own predictions of planetary positions (ephemerides), but more realistically the observer will be able to understand the published data lists properly instead of just treating them as ‘recipes.’ When the observer has obtained measurements, he/she will be able to analyze them in a scientific manner and to understand the significance and meaning of the results.

“Telescopes and Techniques, 3rd Edition” fills a niche at the start of an undergraduate astronomer’s university studies, as shown by it having been widely adopted as a set textbook. This third edition is now needed to update its material with the many new observing developments and study areas that have come into prominence since it was published. The book concentrates on the knowledge needed to understand how small(ish) optical telescopes function, their main designs and how to set them up, plus introducing the reader to the many ways in which objects in the sky change their positions and how they may be observed. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the most advanced topics of photometry and spectroscopy are included, but mainly to enable the reader to see some of the developments possible from the basic observing techniques covered in the main parts of the book.

This comprehensive reference provides up-to-date information on component and subsystem technologies, fundamental limitations, and approaches to reach those limits. It covers basic concepts and state-of-the-art technologies, emphasizing device technology, implementation techniques, and system trades. The authors discuss hardware technologies and their applications, and also explore ongoing research activities and those planned for the near future.

The analytical aspects of laser communication have been covered to a great extent in several books. However, a detailed approach to system design and development, including trades on subsystem choices and implications of the hardware selection for satellite and aircraft telecommunications, is missing. Highlighting key design variations and critical differences between them, this book distills decades’ worth of experience into a practical resource on hardware technologies.

In his Atlas of Astronomical Discoveries, astronomy journalist Govert Schilling tells the story of 400 years of telescopic astronomy. He looks at the 100 most important discoveries since the invention of the telescope. Doing what Schilling does best, he takes the reader on an adventure through both space and time. Photographs and amazing pictures line the pages of this book, offering the reader an escape from this world and an invitation to a world far beyond what the unaided human eye can detect.

This book is comprised of five chapters and begins with an overview of the fundamentals of holography, with particular reference to spatial and temporal coherence, diffraction at finite and infinite distances, and filtering of spatial frequencies. The reader is then introduced to the principles and applications of holography, focusing on the geometric optics and aberrations of holograms as well as interferometry and microscopy. The following chapters explore how images are produced and reconstructed using a hologram and explain how to detect the differences between two images. Three main types of synthetic holograms are also considered: binary holograms, holograms with several intensity levels, and the holograms called kinoforms. The last chapter is devoted to optical filtering and pattern recognition.

This monograph will be of value to physicists and researchers as well as to those interested in how holography works.

One of the nineteenth century's most significant papers, "A Dynamical Theory of the Electromagnetic Field," appears here, along with similarly influential expositions of Maxwell's dynamical theory of gases. The author's extensive range of interests is well represented, from his discussions of color blindness and the composition of Saturn's rings to his essays on geometrical optics, ether, and protecting buildings from lightning. His less technical writings are featured as well, including items written for the Encyclopedia Britannica and Nature magazine, book reviews, and popular lectures. Striking in their originality, these papers offer a wealth of stimulating and inspiring reading to modern students of mathematics and physics.