## Similar

“Artfully envisions a breathtakingly better world.” —Los Angeles Times

“Elaborate, smart and persuasive.” —The Boston Globe

“A pleasure to read.” —The Wall Street Journal

One of CBS News’s Best Fall Books of 2005 • Among St Louis Post-Dispatch’s Best Nonfiction Books of 2005 • One of Amazon.com’s Best Science Books of 2005

A radical and optimistic view of the future course of human development from the bestselling author of How to Create a Mind and The Age of Spiritual Machines who Bill Gates calls “the best person I know at predicting the future of artificial intelligence”

For over three decades, Ray Kurzweil has been one of the most respected and provocative advocates of the role of technology in our future. In his classic The Age of Spiritual Machines, he argued that computers would soon rival the full range of human intelligence at its best. Now he examines the next step in this inexorable evolutionary process: the union of human and machine, in which the knowledge and skills embedded in our brains will be combined with the vastly greater capacity, speed, and knowledge-sharing ability of our creations.

From the Trade Paperback edition.

#1 NEW YORK TIMES BESTSELLER

Her name was Henrietta Lacks, but scientists know her as HeLa. She was a poor black tobacco farmer whose cells—taken without her knowledge in 1951—became one of the most important tools in medicine, vital for developing the polio vaccine, cloning, gene mapping, and more. Henrietta's cells have been bought and sold by the billions, yet she remains virtually unknown, and her family can't afford health insurance. This phenomenal New York Times bestseller tells a riveting story of the collision between ethics, race, and medicine; of scientific discovery and faith healing; and of a daughter consumed with questions about the mother she never knew.

A long life in a healthy, vigorous, youthful body has always been one of humanity's greatest dreams. Recent progress in genetic manipulations and calorie-restricted diets in laboratory animals hold forth the promise that someday science will enable us to exert total control over our own biological aging.

Nearly all scientists who study the biology of aging agree that we will someday be able to substantially slow down the aging process, extending our productive, youthful lives. Dr. Aubrey de Grey is perhaps the most bullish of all such researchers. As has been reported in media outlets ranging from 60 Minutes to The New York Times, Dr. de Grey believes that the key biomedical technology required to eliminate aging-derived debilitation and death entirely—technology that would not only slow but periodically reverse age-related physiological decay, leaving us biologically young into an indefinite future—is now within reach.

In Ending Aging, Dr. de Grey and his research assistant Michael Rae describe the details of this biotechnology. They explain that the aging of the human body, just like the aging of man-made machines, results from an accumulation of various types of damage. As with man-made machines, this damage can periodically be repaired, leading to indefinite extension of the machine's fully functional lifetime, just as is routinely done with classic cars. We already know what types of damage accumulate in the human body, and we are moving rapidly toward the comprehensive development of technologies to remove that damage. By demystifying aging and its postponement for the nonspecialist reader, de Grey and Rae systematically dismantle the fatalist presumption that aging will forever defeat the efforts of medical science.

Key features of Number Theory: Structures, Examples, and Problems:

* A rigorous exposition starts with the natural numbers and the basics.

* Important concepts are presented with an example, which may also emphasize an application. The exposition moves systematically and intuitively to uncover deeper properties.

* Topics include divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, quadratic residues, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems are covered.

* Unique exercises reinforce and motivate the reader, with selected solutions to some of the problems.

* Glossary, bibliography, and comprehensive index round out the text.

Written by distinguished research mathematicians and renowned teachers, this text is a clear, accessible introduction to the subject and a source of fascinating problems and puzzles, from advanced high school students to undergraduates, their instructors, and general readers at all levels.

From the Trade Paperback edition.

In this magisterial look at some twenty-five years of scientific and social development, Sheila Jasanoff compares the politics and policy of the life sciences in Britain, Germany, the United States, and in the European Union as a whole. She shows how public and private actors in each setting evaluated new manifestations of biotechnology and tried to reassure themselves about their safety.

Three main themes emerge. First, core concepts of democratic theory, such as citizenship, deliberation, and accountability, cannot be understood satisfactorily without taking on board the politics of science and technology. Second, in all three countries, policies for the life sciences have been incorporated into "nation-building" projects that seek to reimagine what the nation stands for. Third, political culture influences democratic politics, and it works through the institutionalized ways in which citizens understand and evaluate public knowledge. These three aspects of contemporary politics, Jasanoff argues, help account not only for policy divergences but also for the perceived legitimacy of state actions.

Newly enlarged, updated second edition of a valuable, widely used text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discussed are binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. New to this edition: Chapter 9 shows how to mix known algorithms and create new ones, while Chapter 10 presents the "Chop-Sticks" algorithm, used to obtain all minimum cuts in an undirected network without applying traditional maximum flow techniques. This algorithm has led to the new mathematical specialty of network algebra. The text assumes no background in linear programming or advanced data structure, and most of the material is suitable for undergraduates. 153 black-and-white illus. 23 tables. Exercises, with answers at the ends of chapters.

Each main topic is treated in depth from its historical conception through to its status today. Many beautiful solutions have emerged for basic chessboard problems since mathematicians first began working on them in earnest over three centuries ago, but such problems, including those involving polyominoes, have now been extended to three-dimensional chessboards and even chessboards on unusual surfaces such as toruses (the equivalent of playing chess on a doughnut) and cylinders. Using the highly visual language of graph theory, Watkins gently guides the reader to the forefront of current research in mathematics. By solving some of the many exercises sprinkled throughout, the reader can share fully in the excitement of discovery.

Showing that chess puzzles are the starting point for important mathematical ideas that have resonated for centuries, Across the Board will captivate students and instructors, mathematicians, chess enthusiasts, and puzzle devotees.

This edition includes greatly expanded focus on stem cells, including adult and embryonic stem cells and progenitor populations that may soon lead to new tissue engineering therapies for heart disease, diabetes, and a wide variety of other diseases that afflict humanity. This up-to-date coverage of stem cell biology and other emerging technologies is complemented by a series of new chapters on recent clinical experience in applying tissue engineering. The result is a comprehensive textbook that we believe will be useful to students and experts alike.

New to this edition:

*Includes new chapters on biomaterial-protein interactions, nanocomposite and three-dimensional scaffolds, skin substitutes, spinal cord, vision enhancement, and heart valves

*Expanded coverage of adult and embryonic stem cells of the cardiovascular, hematopoietic, musculoskeletal, nervous, and other organ systems

Readership: Undergraduates, graduates and mathematicians.

keywords:Binomial Coefficients;Multinomial Coefficients;Euler Ï-Function;Enumerative Combinatorics;Addition Principle;Multiplication Principle;Combination;Permutation;Identities;Pigeon Hole Principle;Ramsey Numbers;Principle of Inclusion and Exclusion;Stirling Numbers;Derangements;Problem of MÃ©nages;Sieve of Eratosthenes;Generating Functions;Partitions of Integers;Exponential Generating Functions;Recurrence Relations;Characteristic Polynomial;Catalan Numbers

“This book should be a must for all mathematicians who are involved in the training of Mathematical Olympiad teams, but it will also be a valuable source of problems for university courses.”

Mathematical ReviewsThe superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine.

What else is new?

New chapters on measurement and analytic graph theory

Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing.

Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth

Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition

Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader

Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.

The book begins by tracing the development of cryptology from that of an arcane practice used, for example, to conceal alchemic recipes, to the modern scientific method that is studied and employed today. The remainder of the book explores the modern aspects and applications of cryptography, covering symmetric- and public-key cryptography, cryptographic protocols, key management, message authentication, e-mail and Internet security, and advanced applications such as wireless security, smart cards, biometrics, and quantum cryptography. The author also includes non-cryptographic security issues and a chapter devoted to information theory and coding. Nearly 200 diagrams, examples, figures, and tables along with abundant references and exercises complement the discussion.

Written by leading authority and best-selling author on the subject Richard A. Mollin, Codes: The Guide to Secrecy from Ancient to Modern Times is the essential reference for anyone interested in this exciting and fascinating field, from novice to veteran practitioner.

Translated from a well-known Russian work entitled Non-Elementary Problems in an Elementary Exposition, the chief aim of the book is to acquaint the readers with a variety of new mathematical facts, ideas, and methods. And while the majority of the problems represent questions in higher ("non-elementary") mathematics, most can be solved with elementary mathematics. In fact, for the most part, no knowledge of mathematics beyond a good high school course is required.

Volume One contains 100 problems, with detailed solutions, all dealing with probability theory and combinatorial analysis. Topics include the representation of integers as sums and products, combinatorial problems on the chessboard, geometric problems on combinatorial analysis, problems on the binomial coefficients, problems on computing probabilities, experiments with infinitely many possible outcomes, and experiments with a continuum of possible outcomes.

Volume Two contains 74 problems from various branches of mathematics, dealing with such topics as points and lines, lattices of points in the plane, topology, convex polygons, distribution of objects, nondecimal counting, theory of primes, and more. In both volumes the statements of the problems are given first, followed by a section giving complete solutions. Answers and hints are given at the end of the book.

Ideal as a text, for self-study, or as a working resource for a mathematics club, this wide-ranging compilation offers 174 carefully chosen problems that will test the mathematical acuity and problem-solving skills of almost any student, teacher, or mathematician.

László Lovász is a Senior Researcher in the Theory Group at Microsoft Corporation. He is a recipient of the 1999 Wolf Prize and the Gödel Prize for the top paper in Computer Science. József Pelikán is Professor of Mathematics in the Department of Algebra and Number Theory at Eötvös Loránd University, Hungary. In 2002, he was elected Chairman of the Advisory Board of the International Mathematical Olympiad. Katalin Vesztergombi is Senior Lecturer in the Department of Mathematics at the University of Washington.

Imhausen shows that from the earliest beginnings, pharaonic civilization used numerical techniques to efficiently control and use their material resources and labor. Even during the Old Kingdom, a variety of metrological systems had already been devised. By the Middle Kingdom, procedures had been established to teach mathematical techniques to scribes in order to make them proficient administrators for their king. Imhausen looks at counterparts to the notation of zero, suggests an explanation for the evolution of unit fractions, and analyzes concepts of arithmetic techniques. She draws connections and comparisons to Mesopotamian mathematics, examines which individuals in Egyptian society held mathematical knowledge, and considers which scribes were trained in mathematical ideas and why.

Of interest to historians of mathematics, mathematicians, Egyptologists, and all those curious about Egyptian culture, Mathematics in Ancient Egypt sheds new light on a civilization's unique mathematical evolution.

In Regenesis, Harvard biologist George Church and science writer Ed Regis explore the possibilities—and perils—of the emerging field of synthetic biology. Synthetic biology, in which living organisms are selectively altered by modifying substantial portions of their genomes, allows for the creation of entirely new species of organisms. These technologies—far from the out-of-control nightmare depicted in science fiction—have the power to improve human and animal health, increase our intelligence, enhance our memory, and even extend our life span. A breathtaking look at the potential of this world-changing technology, Regenesis is nothing less than a guide to the future of life.

The contributors are Marco Abate, Marco Arizzi, Alexander Blokh, Thierry Bousch, Xavier Buff, Serge Cantat, Tao Chen, Robert Devaney, Alexandre Dezotti, Tien-Cuong Dinh, Romain Dujardin, Hugo García-Compeán, William Goldman, Rotislav Grigorchuk, John Hubbard, Yunping Jiang, Linda Keen, Jan Kiwi, Genadi Levin, Daniel Meyer, John Milnor, Carlos Moreira, Vincente Muñoz, Viet-Anh Nguyên, Lex Oversteegen, Ricardo Pérez-Marco, Ross Ptacek, Jasmin Raissy, Pascale Roesch, Roberto Santos-Silva, Dierk Schleicher, Nessim Sibony, Daniel Smania, Tan Lei, William Thurston, Vladlen Timorin, Sebastian van Strien, and Alberto Verjovsky.

Strengthening the analytic flavor of the book, this Second Edition:

Features a new chapter on analytic combinatorics and new sections on advanced applications of generating functions Demonstrates powerful techniques that do not require the residue theorem or complex integration Adds new exercises to all chapters, significantly extending coverage of the given topicsIntroduction to Enumerative and Analytic Combinatorics, Second Edition makes combinatorics more accessible, increasing interest in this rapidly expanding field.

Discrete mathematics has the answer to these—and many other—questions of picking, choosing, and shuffling. T. S. Michael's gem of a book brings this vital but tough-to-teach subject to life using examples from real life and popular culture. Each chapter uses one problem—such as slicing a pizza—to detail key concepts about counting numbers and arranging finite sets. Michael takes a different perspective in tackling each of eight problems and explains them in differing degrees of generality, showing in the process how the same mathematical concepts appear in varied guises and contexts. In doing so, he imparts a broader understanding of the ideas underlying discrete mathematics and helps readers appreciate and understand mathematical thinking and discovery.

This book explains the basic concepts of discrete mathematics and demonstrates how to apply them in largely nontechnical language. The explanations and formulas can be grasped with a basic understanding of linear equations.

An exciting new direction for combinatorics, this book will interest graduate students and researchers working in mathematical subdisciplines requiring the mastery and practice of high-dimensional Ramsey theory.

Outlining fundamental concepts vital to graduate students and practitioners entering the biotech industry in management or in any entrepreneurial capacity, Biotechnology Entrepreneurship and Management provides tested strategies and hard-won lessons from a leading board of educators and practitioners.

It provides a ‘how-to’ for individuals training at any level for the biotech industry, from macro to micro. Coverage ranges from the initial challenge of translating a technology idea into a working business case, through securing angel investment, and in managing all aspects of the result: business valuation, business development, partnering, biological manufacturing, FDA approvals and regulatory requirements.

An engaging and user-friendly style is complemented by diverse diagrams, graphics and business flow charts with decision trees to support effective management and decision making.

Provides tested strategies and lessons in an engaging and user-friendly style supplemented by tailored pedagogy, training tips and overview sidebarsCase studies are interspersed throughout each chapter to support key concepts and best practices.Enhanced by use of numerous detailed graphics, tables and flow chartsFollowing on from the Industrial or machine age, the space age and the digital age, the Augmented Age will be based on four key disruptive themes—Artificial Intelligence, Experience Design, Smart Infrastructure, and HealthTech. Historically the previous ‘ages’ bought significant disruption and changes, but on a net basis jobs were created, wealth was enhanced, and the health and security of society improved. What will the Augmented Age bring? Will robots take our jobs, and AI’s subsume us as inferior intelligences, or will this usher in a new age of abundance?

Augmented is a book on future history, but more than that, it is a story about how you will live your life in a world that will change more in the next 20 years than it has in the last 250 years. Are you ready to adapt? Because if history proves anything, you don't have much of a choice.

Genetically modified organisms (GMOs) including plants and the foods made from them, are a hot topic of debate today, but soon related technology could go much further and literally change what it means to be human. Scientists are on the verge of being able to create people who are GMOs.

Should they do it? Could we become a healthier and ''better'' species or might eugenics go viral leading to a real, new world of genetic dystopia? GMO Sapiens tackles such questions by taking a fresh look at the cutting-edge biotech discoveries that have made genetically modified people possible.

Bioengineering, genomics, synthetic biology, and stem cells are changing sci-fi into reality before our eyes. This book will capture your imagination with its clear, approachable writing style. It will draw you into the fascinating discussion of the life-changing science of human genetic modification.

Contents:An Introduction to Playing GodThe Birth and Explosive Growth of GMOsHuman CloningBuild-a-Baby Better via GeneticsDIY Guide to Creating GMO SapiensEugenics and TranshumanismCultural Views on Human Genetic ModificationGMO Sapiens Today and TomorrowReadership: Undergraduate biology majors, graduate biology majors, non-experts interested in GMOs, biologists and teenagers interested in cloning and human genetic modification.

Key Features:Books on this hot new topic of creating GMO people are rare, tend to be out-of-date, or have narrow topic rangesThe goal of this book is to educate and entertain an educated lay audience about human genetic modificationKeywords:GMO;Genetically Modified Organism;GMO Sapien;Cloning;Genomics;Designer Babies;Mitochondrial Transfer;Stem Cells;Infertility

"What I find troubling, exciting but scary, is that I find myself agreeing with an undertone, I do not support human germline genetic modification but with all the new information and perspectives available to me I have found myself questioning my own views and will be watching any developments with a fascinated interest I would rather not admit to."

The NODE'

"Intelligent Design" is being taught in our schools; educators are being asked to "teach the controversy" behind evolutionary theory. There is no controversy. Dawkins sifts through rich layers of scientific evidence—from living examples of natural selection to clues in the fossil record; from natural clocks that mark the vast epochs wherein evolution ran its course to the intricacies of developing embryos; from plate tectonics to molecular genetics—to make the airtight case that "we find ourselves perched on one tiny twig in the midst of a blossoming and flourishing tree of life and it is no accident, but the direct consequence of evolution by non-random selection." His unjaded passion for the natural world turns what might have been a negative argument, exposing the absurdities of the creationist position, into a positive offering to the reader: nothing less than a master’s vision of life, in all its splendor.

Algebra, Logic and Combinatorics is the third volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.

Contents:Enumerative Combinatorics (Peter J Cameron)Introduction to the Finite Simple Groups (Robert A Wilson)Introduction to Representations of Algebras and Quivers (Anton Cox)The Invariant Theory of Finite Groups (Peter Fleischmann and James Shank)Model Theory (Ivan Tomašić)

Readership: Researchers, graduate or PhD mathematical-science students who require a reference book that covers algebra, logic or combinatorics.

Filling the void, Biotechnology Operations: Principles and Practices reflects this integrative philosophy, serving as a practical guide for students, professionals, or anyone else with interests in the biotech industry. Although many books emphasize specific technical aspects of biotech, this is perhaps the first to integrate essential concepts of product development and scientific and management skills with the seven functional areas of biotechnology:

Biomanufacturing Clinical trials Nonclinical studies Project management Quality assurance Quality control Regulatory affairs

A practical roadmap to optimizing biotechnology operations, this reference illustrates how to use specific product planning, design, and project management processes to seamlessly merge plans and efforts in the key functional areas. Applying lessons learned throughout the nascent history of biotech, author Michael Roy highlights developmental principles that could bring future products to market more safely and efficiently. Drawing from his experiences working in industry and teaching a graduate course at the University of Wisconsin, this hotly anticipated book clarifies basic methodologies and practices to help reduce risks and resolve problems as future technological discoveries are developed into tangible products.

In the current debate about creationism and intelligent design, there is an element of the controversy that is rarely mentioned-the evidence. Yet the proof of evolution by natural selection is vast, varied, and magnificent. In this succinct and accessible summary of the facts supporting the theory of natural selection, Jerry A. Coyne dispels common misunderstandings and fears about evolution and clearly confirms the scientific truth that supports this amazing process of change. Weaving together the many threads of modern work in genetics, paleontology, geology, molecular biology, and anatomy that demonstrate the "indelible stamp" of the processes first proposed by Darwin, Why Evolution Is True does not aim to prove creationism wrong. Rather, by using irrefutable evidence, it sets out to prove evolution right.

Though the book contains advanced material, such as cryptography on elliptic curves, Goppa codes using algebraic curves over finite fields, and the recent AKS polynomial primality test, the authors' objective has been to keep the exposition as self-contained and elementary as possible. Therefore the book will be useful to students and researchers, both in theoretical (e.g. mathematicians) and in applied sciences (e.g. physicists, engineers, computer scientists, etc.) seeking a friendly introduction to the important subjects treated here. The book will also be useful for teachers who intend to give courses on these topics.

The Handbook of Applied Cryptography provides a treatment that is multifunctional:

It serves as an introduction to the more practical aspects of both conventional and public-key cryptography

It is a valuable source of the latest techniques and algorithms for the serious practitioner

It provides an integrated treatment of the field, while still presenting each major topic as a self-contained unit

It provides a mathematical treatment to accompany practical discussions

It contains enough abstraction to be a valuable reference for theoreticians while containing enough detail to actually allow implementation of the algorithms discussed

Now in its third printing, this is the definitive cryptography reference that the novice as well as experienced developers, designers, researchers, engineers, computer scientists, and mathematicians alike will use.

Eve Herold's Beyond Human examines the medical technologies taking shape at the nexus of computing, microelectronics, engineering, nanotechnology, cellular and gene therapies, and robotics. These technologies will dramatically transform our lives and allow us to live for hundreds of years. Yet, with these blessings come complicated practical and ethical issues, some of which we can predict, but many we cannot.

Beyond Human taps the minds of doctors, scientists, and engineers engaged in developing a host of new technologies while telling the stories of some of the patients courageously testing the radical new treatments about to come into the market.

Beyond Human asks the difficult questions of the scientists and bioethicists who seek to ensure that as our bodies and brains become ever more artificial, we hold onto our humanity. In this new world, will everyone have access to technological miracles, or will we end up living in a world of radical disparities? How will society accommodate life spans that extend into hundreds of years? Will we and our descendants be able to bring about the dream of a future liberated by technology, or will we end up merely serving the machines and devices that keep us healthy, smart, young, and alive?

R. Ford Denison shows how both biotechnology and traditional plant breeding can use Darwinian insights to identify promising routes for crop genetic improvement and avoid costly dead ends. Denison explains why plant traits that have been genetically optimized by individual selection--such as photosynthesis and drought tolerance--are bad candidates for genetic improvement. Traits like plant height and leaf angle, which determine the collective performance of plant communities, offer more room for improvement. Agriculturalists can also benefit from more sophisticated comparisons among natural communities and from the study of wild species in the landscapes where they evolved.

Darwinian Agriculture reveals why it is sometimes better to slow or even reverse evolutionary trends when they are inconsistent with our present goals, and how we can glean new ideas from natural selection's marvelous innovations in wild species.

But what about the average person? How will the Singularity affect our daily lives—our jobs, our families, and our wealth?

Singularity Rising: Surviving and Thriving in a Smarter, Richer, and More Dangerous World focuses on the implications of a future society faced with an abundance of human and artificial intelligence. James D. Miller, an economics professor and popular speaker on the Singularity, reveals how natural selection has been increasing human intelligence over the past few thousand years and speculates on how intelligence enhancements will shape civilization over the next forty years.

Miller considers several possible scenarios in this coming singularity:

• A merger of man and machine making society fantastically wealthy and nearly immortal

• Competition with billions of cheap AIs drive human wages to almost nothing while making investors rich

• Businesses rethink investment decisions to take into account an expected future period of intense creative destruction

• Inequality drops worldwide as technologies mitigate the cognitive cost of living in impoverished environments

• Drugs designed to fight Alzheimer's disease and keep soldiers alert on battlefields have the fortunate side effect of increasing all of their users’ IQs, which, in turn, adds a percentage points to worldwide economic growth

Singularity Rising offers predictions about the economic implications for a future of widely expanding intelligence and practical career and investment advice on flourishing on the way to the Singularity.

Winner of a CHOICE Outstanding Academic Book Award 2011

"... takes the revolutionary concepts and techniques that have traditionally been fodder for graduate study and makes them accessible for all. ... outstanding introduction to the broad field of nanotechnology provides a solid foundation for further study. ... Highly recommended."

—N.M. Fahrenkopf, University at Albany, CHOICE Magazine 2011

Give your students the thorough grounding they need in nanotechnology. A rigorous yet accessible treatment of one of the world’s fastest growing fields, Nanotechnology: Understanding Small Systems, Third Edition provides an accessible introduction without sacrificing rigorous scientific details. This approach makes the subject matter accessible to students from a variety of disciplines. Building on the foundation set by the first two bestselling editions, this third edition maintains the features that made previous editions popular with students and professors alike.

See What’s New in the Third Edition:

Updated coverage of the eight main facets of nanotechnology Expanded treatment of health/environmental ramifications of nanomaterials Comparison of macroscale systems to those at the nanoscale, showing how scale phenomena affects behavior New chapter on nanomedicine New problems, examples, and an exhaustive nanotech glossary

Filled with real-world examples and original illustrations, the presentation makes the material fun and engaging. The systems-based approach gives students the tools to create systems with unique functions and characteristics. Fitting neatly between popular science books and high-level treatises, the book works from the ground up to provide a gateway into an exciting and rapidly evolving area of science.

This book provides an understanding of the microbial challenges to the safety of low aw foods, and a historic backdrop to the paradigm shift now highlighting low aw foods as vehicles for foodborne pathogens. Up-to-date facts and figures of foodborne illness outbreaks and product recalls are included. Special attention is given to the uncanny ability of Salmonella to persist under dry conditions in food processing plants and foods. A section is dedicated specifically to processing plant investigations, providing practical approaches to determining sources of persistent bacterial strains in the industrial food processing environment. Readers are guided through dry cleaning, wet cleaning and alternatives to processing plant hygiene and sanitation. Separate chapters are devoted to low aw food commodities of interest including spices, dried dairy-based products, low aw meat products, dried ready-to-eat cereal products, powdered infant formula, nuts and nut pastes, flours and meals, chocolate and confectionary, dried teas and herbs, and pet foods. The book provides regulatory testing guidelines and recommendations as well as guidance through methodological and sampling challenges to testing spices and low aw foods for the presence of foodborne pathogens. Chapters also address decontamination processes for low aw foods, including heat, steam, irradiation, microwave, and alternative energy-based treatments.

Eating in the Dark tells the story of how these new foods quietly entered America’s food supply. Kathleen Hart explores biotechnology’s real potential to enhance nutrition and cut farmers’ expenses. She also reveals the process by which American government agencies decided not to label genetically modified food, and not to require biotech companies to perform even basic safety tests on their products. Combining a balanced perspective with a sense of urgency, Eating in the Dark is a captivating and important story account of the science and politics propelling the genetic alteration of our food.

From the Trade Paperback edition.

Solutions to most principal network reliability problems—including medium-sized computer networks—are presented in the form of efficient Monte Carlo algorithms and illustrated with numerical examples and tables. Written by reliability experts with significant teaching experience, this reader-friendly text is an excellent resource for software engineering, operations research, industrial engineering, and reliability engineering students, researchers, and engineers.

Stressing intuitive explanations and providing detailed proofs of difficult statements, this self-contained resource includes a wealth of end-of-chapter exercises, numerical examples, tables, and offers a solutions manual—making it ideal for self-study and practical use.

Preview:

The Gene by Siddhartha Mukherjee describes the history of genetic research, the impact of genetic inheritance on his family, and the potential for future applications of gene science. Mukherjee’s father and uncles struggled with disorders such as schizophrenia and bipolar disorder, both of which are linked to genetic mutations.

After centuries of conjecture about the nature of familial inheritance, naturalist Charles Darwin published his theory of evolution in 1859. In 1865, botanist Gregor Mendel proposed that genetic information is passed down from both the paternal and maternal sides of the family in the form of paired genes. Thereafter, eugenics gradually became socially accepted and programs to sterilize the disabled and deviant were established in the United States. The practice of eugenics became socially abhorrent following World War II and the revelations of genocidal practices in Nazi Germany and Stalinist Russia.

Between 1908 and 1963, scientists continued studying genetic material…

PLEASE NOTE: This is key takeaways and analysis of the book and NOT the original book.

Inside this Instaread Summary of The Gene

· Overview of the Book

· Important People

· Key Takeaways

· Analysis of Key Takeaways

The Gene by Siddhartha Mukherjee | Summary & Analysis

Preview:

The Gene by Siddhartha Mukherjee describes the history of genetic research, the impact of genetic inheritance on his family, and the potential for future applications of gene science. Mukherjee’s father and uncles struggled with disorders such as schizophrenia and bipolar disorder, both of which are linked to genetic mutations.

After centuries of conjecture about the nature of familial inheritance, naturalist Charles Darwin published his theory of evolution in 1859. In 1865, botanist Gregor Mendel proposed that genetic information is passed down from both the paternal and maternal sides of the family in the form of paired genes. Thereafter, eugenics gradually became socially accepted and programs to sterilize the disabled and deviant were established in the United States. The practice of eugenics became socially abhorrent following World War II and the revelations of genocidal practices in Nazi Germany and Stalinist Russia.

Between 1908 and 1963, scientists continued studying genetic material…

PLEASE NOTE: This is key takeaways and analysis of the book and NOT the original book.

Inside this Instaread Summary of The Gene:

· Overview of the Book

· Important People

· Key Takeaways

· Analysis of Key Takeaways

About the Author

With Instaread, you can get the key takeaways, summary and analysis of a book in 15 minutes. We read every chapter, identify the key takeaways and analyze them for your convenience.

In The Disappearing Spoon, bestselling author Sam Kean unlocked the mysteries of the periodic table. In THE VIOLINIST'S THUMB, he explores the wonders of the magical building block of life: DNA.

There are genes to explain crazy cat ladies, why other people have no fingerprints, and why some people survive nuclear bombs. Genes illuminate everything from JFK's bronze skin (it wasn't a tan) to Einstein's genius. They prove that Neanderthals and humans bred thousands of years more recently than any of us would feel comfortable thinking. They can even allow some people, because of the exceptional flexibility of their thumbs and fingers, to become truly singular violinists.

Kean's vibrant storytelling once again makes science entertaining, explaining human history and whimsy while showing how DNA will influence our species' future.

Key features of Putnam and Beyond

* Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants.

* Each chapter systematically presents a single subject within which problems are clustered in every section according to the specific topic.

* The exposition is driven by more than 1100 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors.

* Complete solutions to all problems are given at the end of the book. The source, author, and historical background are cited whenever possible.

This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for self-study by undergraduate and graduate students, as well as teachers and researchers in the physical sciences who wish to to expand their mathematical horizons.

Key features:

* Introductory chapters present the main ideas and topics in graph theory—walks, paths and cycles, radius, diameter, eccentricity, cuts and connectivity, trees

* Subsequent chapters examine specialized topics and applications

* Numerous examples and illustrations

* Comprehensive index and bibliography, with suggested literature for more advanced material

New to the second edition:

* New chapters on labeling and communications networks and small-worlds

* Expanded beginner’s material in the early chapters, including more examples, exercises, hints and solutions to key problems

* Many additional changes, improvements, and corrections throughout resulting from classroom use and feedback

Striking a balance between a theoretical and practical approach with a distinctly applied flavor, this gentle introduction to graph theory consists of carefully chosen topics to develop graph-theoretic reasoning for a mixed audience. Familiarity with the basic concepts of set theory, along with some background in matrices and algebra, and a little mathematical maturity are the only prerequisites.

-----

From a review of the first edition:

"Altogether the book gives a comprehensive introduction to graphs, their theory and their application...The use of the text is optimized when the exercises are solved. The obtained skills improve understanding of graph theory as well... It is very useful that the solutions of these exercises are collected in an appendix."

—Simulation News Europe

Avoiding the hype of popular science and the pessimism of most social science, Nikolas Rose analyzes contemporary molecular biopolitics, examining developments in genomics, neuroscience, pharmacology, and psychopharmacology and the ways they have affected racial politics, crime control, and psychiatry. Rose analyzes the transformation of biomedicine from the practice of healing to the government of life; the new emphasis on treating disease susceptibilities rather than disease; the shift in our understanding of the patient; the emergence of new forms of medical activism; the rise of biocapital; and the mutations in biopower. He concludes that these developments have profound consequences for who we think we are, and who we want to be.

It took Charles Darwin more than twenty years to publish this book, in part because he realized that it would ignite a firestorm of controversy. On the Origin of Species first appeared in 1859, and it remains a continuing source of conflict to this day. Even among those who reject its ideas, however, the work's impact is undeniable. In science, philosophy, and theology, this is a book that changed the world.

In addition to its status as the focus of a dramatic turning point in scientific thought, On the Origin of Species stands as a remarkably readable study. Carefully reasoned and well-documented in its arguments, the work offers coherent views of natural selection, adaptation, the struggle for existence, survival of the fittest, and other concepts that form the foundation of modern evolutionary theory. This volume is a reprint of the critically acclaimed first edition.

Internationally best-selling poet Christian Bök has spent more than ten years writing what promises to be the first example of "living poetry." After successfully demonstrating his concept in a colony of E. coli, Bök is on the verge of enciphering a beautiful, anomalous poem into the genome of an unkillable bacterium (Deinococcus radiodurans), which can, in turn, "read" his text, responding to it by manufacturing a viable, benign protein, whose sequence of amino acids enciphers yet another poem. The engineered organism might conceivably serve as a post-apocalyptic archive, capable of outlasting our civilization.

Book I of The Xenotext constitutes a kind of "demonic grimoire," providing a scientific framework for the project with a series of poems, texts, and illustrations. A Virgilian welcome to the Inferno, Book I is the "orphic" volume in a diptych, addressing the pastoral heritage of poets, who have sought to supplant nature in both beauty and terror. The book sets the conceptual groundwork for the second volume, which will document the experiment itself. The Xenotext is experimental poetry in the truest sense of the term.

Christian Bök is the author of Crystallography (1994) and Eunoia (2001), which won the Griffin Poetry Prize. He teaches at the University of Calgary in Alberta, Canada.