## Similar

In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we’ve never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space.

Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man’s journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century’s leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat’s last theorem, that had seemed intractable before.

At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.

Hidden symmetries were first discovered nearly two hundred years ago by French mathematician évariste Galois. They have been used extensively in the oldest and largest branch of mathematics--number theory--for such diverse applications as acoustics, radar, and codes and ciphers. They have also been employed in the study of Fibonacci numbers and to attack well-known problems such as Fermat's Last Theorem, Pythagorean Triples, and the ever-elusive Riemann Hypothesis. Mathematicians are still devising techniques for teasing out these mysterious patterns, and their uses are limited only by the imagination.

The first popular book to address representation theory and reciprocity laws, Fearless Symmetry focuses on how mathematicians solve equations and prove theorems. It discusses rules of math and why they are just as important as those in any games one might play. The book starts with basic properties of integers and permutations and reaches current research in number theory. Along the way, it takes delightful historical and philosophical digressions. Required reading for all math buffs, the book will appeal to anyone curious about popular mathematics and its myriad contributions to everyday life.

In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.

Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.

Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..

Unlike many authors, however, Mr. Friedberg encourages students to think about the imaginative, playful qualities of numbers as they consider such subjects as primes and divisibility, quadratic forms and residue arithmetic and quadratic reciprocity and related theorems. Moreover, the author has included a number of unusual features to challenge and stimulate students: some of the original problems in Diophantus' Arithmetica, proofs of Fermat's Last Theorem for the exponents 3and 4, and two proofs of Wilson's Theorem.

Readers with a mathematical bent will enjoy and benefit from these entertaining and thought-provoking adventures in the fascinating realm of number theory. Mr. Friedberg is currently Professor of Physics at Barnard College, where he is Chairman of the Department of Physics and Astronomy.

The book begins with a systematic study of real numbers, understood to be a set of objects satisfying certain definite axioms. The concepts of a mathematical structure and an isomorphism are introduced in Chapter 2, after a brief digression on set theory, and a proof of the uniqueness of the structure of real numbers is given as an illustration. Two other structures are then introduced, namely n-dimensional space and the field of complex numbers.

After a detailed treatment of metric spaces in Chapter 3, a general theory of limits is developed in Chapter 4. Chapter 5 treats some theorems on continuous numerical functions on the real line, and then considers the use of functional equations to introduce the logarithm and the trigonometric functions. Chapter 6 is on infinite series, dealing not only with numerical series but also with series whose terms are vectors and functions (including power series). Chapters 7 and 8 treat differential calculus proper, with Taylor's series leading to a natural extension of real analysis into the complex domain. Chapter 9 presents the general theory of Riemann integration, together with a number of its applications. Analytic functions are covered in Chapter 10, while Chapter 11 is devoted to improper integrals, and makes full use of the technique of analytic functions.

Each chapter includes a set of problems, with selected hints and answers at the end of the book. A wealth of examples and applications can be found throughout the text. Over 340 theorems are fully proved.

The book begins with fundamentals, with a definition of complex numbers, their geometric representation, their algebra, powers and roots of complex numbers, set theory as applied to complex analysis, and complex functions and sequences. The notions of proper and improper complex numbers and of infinity are fully and clearly explained, as is stereographic projection. Individual chapters then cover limits and continuity, differentiation of analytic functions, polynomials and rational functions, Mobius transformations with their circle-preserving property, exponentials and logarithms, complex integrals and the Cauchy theorem , complex series and uniform convergence, power series, Laurent series and singular points, the residue theorem and its implications, harmonic functions (a subject too often slighted in first courses in complex analysis), partial fraction expansions, conformal mapping, and analytic continuation.

Elementary functions are given a more detailed treatment than is usual for a book at this level. Also, there is an extended discussion of the Schwarz-Christolfel transformation, which is particularly important for applications.

There is a great abundance of worked-out examples, and over three hundred problems (some with hints and answers), making this an excellent textbook for classroom use as well as for independent study. A noteworthy feature is the fact that the parentage of this volume makes it possible for the student to pursue various advanced topics in more detail in the three-volume original, without the problem of having to adjust to a new terminology and notation .

In this way, IntroductoryComplex Analysis serves as an introduction not only to the whole field of complex analysis, but also to the magnum opus of an important contemporary Russian mathematician.

Key features of Number Theory: Structures, Examples, and Problems:

* A rigorous exposition starts with the natural numbers and the basics.

* Important concepts are presented with an example, which may also emphasize an application. The exposition moves systematically and intuitively to uncover deeper properties.

* Topics include divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, quadratic residues, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems are covered.

* Unique exercises reinforce and motivate the reader, with selected solutions to some of the problems.

* Glossary, bibliography, and comprehensive index round out the text.

Written by distinguished research mathematicians and renowned teachers, this text is a clear, accessible introduction to the subject and a source of fascinating problems and puzzles, from advanced high school students to undergraduates, their instructors, and general readers at all levels.

Bellos has traveled all around the globe and has plunged into history to uncover fascinating stories of mathematical achievement, from the breakthroughs of Euclid, the greatest mathematician of all time, to the creations of the Zen master of origami, one of the hottest areas of mathematical work today. Taking us into the wilds of the Amazon, he tells the story of a tribe there who can count only to five and reports on the latest findings about the math instinct—including the revelation that ants can actually count how many steps they’ve taken. Journeying to the Bay of Bengal, he interviews a Hindu sage about the brilliant mathematical insights of the Buddha, while in Japan he visits the godfather of Sudoku and introduces the brainteasing delights of mathematical games.

Exploring the mysteries of randomness, he explains why it is impossible for our iPods to truly randomly select songs. In probing the many intrigues of that most beloved of numbers, pi, he visits with two brothers so obsessed with the elusive number that they built a supercomputer in their Manhattan apartment to study it. Throughout, the journey is enhanced with a wealth of intriguing illustrations, such as of the clever puzzles known as tangrams and the crochet creation of an American math professor who suddenly realized one day that she could knit a representation of higher dimensional space that no one had been able to visualize.

Whether writing about how algebra solved Swedish traffic problems, visiting the Mental Calculation World Cup to disclose the secrets of lightning calculation, or exploring the links between pineapples and beautiful teeth, Bellos is a wonderfully engaging guide who never fails to delight even as he edifies. Here’s Looking at Euclid is a rare gem that brings the beauty of math to life.

Each main topic is treated in depth from its historical conception through to its status today. Many beautiful solutions have emerged for basic chessboard problems since mathematicians first began working on them in earnest over three centuries ago, but such problems, including those involving polyominoes, have now been extended to three-dimensional chessboards and even chessboards on unusual surfaces such as toruses (the equivalent of playing chess on a doughnut) and cylinders. Using the highly visual language of graph theory, Watkins gently guides the reader to the forefront of current research in mathematics. By solving some of the many exercises sprinkled throughout, the reader can share fully in the excitement of discovery.

Showing that chess puzzles are the starting point for important mathematical ideas that have resonated for centuries, Across the Board will captivate students and instructors, mathematicians, chess enthusiasts, and puzzle devotees.

"This book covers many interesting topics not usually covered in a present day undergraduate course, as well as certain basic topics such as the development of the calculus and the solution of polynomial equations. The fact that the topics are introduced in their historical contexts will enable students to better appreciate and understand the mathematical ideas involved...If one constructs a list of topics central to a history course, then they would closely resemble those chosen here."

(David Parrott, Australian Mathematical Society)

"The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community."

(European Mathematical Society)

"Since Stillwell treats many topics, most mathematicians will learn a lot from this book as well as they will find pleasant and rather clear expositions of custom materials. The book is accessible to students that have already experienced calculus, algebra and geometry and will give them a good account of how the different branches of mathematics interact."

(Denis Bonheure, Bulletin of the Belgian Society)

This third edition includes new chapters on simple groups and combinatorics, and new sections on several topics, including the Poincare conjecture. The book has also been enriched by added exercises.

Readership: Undergraduates, graduates and mathematicians.

keywords:Binomial Coefficients;Multinomial Coefficients;Euler Ï-Function;Enumerative Combinatorics;Addition Principle;Multiplication Principle;Combination;Permutation;Identities;Pigeon Hole Principle;Ramsey Numbers;Principle of Inclusion and Exclusion;Stirling Numbers;Derangements;Problem of MÃ©nages;Sieve of Eratosthenes;Generating Functions;Partitions of Integers;Exponential Generating Functions;Recurrence Relations;Characteristic Polynomial;Catalan Numbers

“This book should be a must for all mathematicians who are involved in the training of Mathematical Olympiad teams, but it will also be a valuable source of problems for university courses.”

Mathematical ReviewsThe book begins by tracing the development of cryptology from that of an arcane practice used, for example, to conceal alchemic recipes, to the modern scientific method that is studied and employed today. The remainder of the book explores the modern aspects and applications of cryptography, covering symmetric- and public-key cryptography, cryptographic protocols, key management, message authentication, e-mail and Internet security, and advanced applications such as wireless security, smart cards, biometrics, and quantum cryptography. The author also includes non-cryptographic security issues and a chapter devoted to information theory and coding. Nearly 200 diagrams, examples, figures, and tables along with abundant references and exercises complement the discussion.

Written by leading authority and best-selling author on the subject Richard A. Mollin, Codes: The Guide to Secrecy from Ancient to Modern Times is the essential reference for anyone interested in this exciting and fascinating field, from novice to veteran practitioner.

Newly enlarged, updated second edition of a valuable, widely used text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discussed are binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. New to this edition: Chapter 9 shows how to mix known algorithms and create new ones, while Chapter 10 presents the "Chop-Sticks" algorithm, used to obtain all minimum cuts in an undirected network without applying traditional maximum flow techniques. This algorithm has led to the new mathematical specialty of network algebra. The text assumes no background in linear programming or advanced data structure, and most of the material is suitable for undergraduates. 153 black-and-white illus. 23 tables. Exercises, with answers at the ends of chapters.

Translated from a well-known Russian work entitled Non-Elementary Problems in an Elementary Exposition, the chief aim of the book is to acquaint the readers with a variety of new mathematical facts, ideas, and methods. And while the majority of the problems represent questions in higher ("non-elementary") mathematics, most can be solved with elementary mathematics. In fact, for the most part, no knowledge of mathematics beyond a good high school course is required.

Volume One contains 100 problems, with detailed solutions, all dealing with probability theory and combinatorial analysis. Topics include the representation of integers as sums and products, combinatorial problems on the chessboard, geometric problems on combinatorial analysis, problems on the binomial coefficients, problems on computing probabilities, experiments with infinitely many possible outcomes, and experiments with a continuum of possible outcomes.

Volume Two contains 74 problems from various branches of mathematics, dealing with such topics as points and lines, lattices of points in the plane, topology, convex polygons, distribution of objects, nondecimal counting, theory of primes, and more. In both volumes the statements of the problems are given first, followed by a section giving complete solutions. Answers and hints are given at the end of the book.

Ideal as a text, for self-study, or as a working resource for a mathematics club, this wide-ranging compilation offers 174 carefully chosen problems that will test the mathematical acuity and problem-solving skills of almost any student, teacher, or mathematician.

László Lovász is a Senior Researcher in the Theory Group at Microsoft Corporation. He is a recipient of the 1999 Wolf Prize and the Gödel Prize for the top paper in Computer Science. József Pelikán is Professor of Mathematics in the Department of Algebra and Number Theory at Eötvös Loránd University, Hungary. In 2002, he was elected Chairman of the Advisory Board of the International Mathematical Olympiad. Katalin Vesztergombi is Senior Lecturer in the Department of Mathematics at the University of Washington.

Every number in this book is identified by its "field marks," "similar species," "personality," and "associations." For example, one field mark of the number 6 is that it is the first perfect number-- the sum of its divisors (1, 2, and 3) is equal to the number itself. Thus 28, the next perfect number, is a similar species. And the fact that 6 can easily be broken into 2 and 3 is part of its personality, a trait that is helpful when large numbers are being either multiplied or divided by 6. Associations with 6 include its relationship to the radius of a circle. In addition to such classifications, special attention is paid to dozens of other fascinating numbers, including zero, pi, 10 to the 76th power (the number of particles in the universe), transfinite and other exceptionally larger numbers, and the concept of infinity.

Ideal for beginners but organized to appeal to the mathematically literate, The Kingdom of Infinite Number will not only add to readers' enjoyment of mathematics, but to their problem-solving abilities as well.

Imhausen shows that from the earliest beginnings, pharaonic civilization used numerical techniques to efficiently control and use their material resources and labor. Even during the Old Kingdom, a variety of metrological systems had already been devised. By the Middle Kingdom, procedures had been established to teach mathematical techniques to scribes in order to make them proficient administrators for their king. Imhausen looks at counterparts to the notation of zero, suggests an explanation for the evolution of unit fractions, and analyzes concepts of arithmetic techniques. She draws connections and comparisons to Mesopotamian mathematics, examines which individuals in Egyptian society held mathematical knowledge, and considers which scribes were trained in mathematical ideas and why.

Of interest to historians of mathematics, mathematicians, Egyptologists, and all those curious about Egyptian culture, Mathematics in Ancient Egypt sheds new light on a civilization's unique mathematical evolution.

In addition, it studies semigroup, group action, Hopf's group, topological groups and Lie groups with their actions, applications of ring theory to algebraic geometry, and defines Zariski topology, as well as applications of module theory to structure theory of rings and homological algebra. Algebraic aspects of classical number theory and algebraic number theory are also discussed with an eye to developing modern cryptography. Topics on applications to algebraic topology, category theory, algebraic geometry, algebraic number theory, cryptography and theoretical computer science interlink the subject with different areas. Each chapter discusses individual topics, starting from the basics, with the help of illustrative examples. This comprehensive text with a broad variety of concepts, applications, examples, exercises and historical notes represents a valuable and unique resource.

The contributors are Marco Abate, Marco Arizzi, Alexander Blokh, Thierry Bousch, Xavier Buff, Serge Cantat, Tao Chen, Robert Devaney, Alexandre Dezotti, Tien-Cuong Dinh, Romain Dujardin, Hugo García-Compeán, William Goldman, Rotislav Grigorchuk, John Hubbard, Yunping Jiang, Linda Keen, Jan Kiwi, Genadi Levin, Daniel Meyer, John Milnor, Carlos Moreira, Vincente Muñoz, Viet-Anh Nguyên, Lex Oversteegen, Ricardo Pérez-Marco, Ross Ptacek, Jasmin Raissy, Pascale Roesch, Roberto Santos-Silva, Dierk Schleicher, Nessim Sibony, Daniel Smania, Tan Lei, William Thurston, Vladlen Timorin, Sebastian van Strien, and Alberto Verjovsky.

Strengthening the analytic flavor of the book, this Second Edition:

Features a new chapter on analytic combinatorics and new sections on advanced applications of generating functions Demonstrates powerful techniques that do not require the residue theorem or complex integration Adds new exercises to all chapters, significantly extending coverage of the given topicsIntroduction to Enumerative and Analytic Combinatorics, Second Edition makes combinatorics more accessible, increasing interest in this rapidly expanding field.

Discrete mathematics has the answer to these—and many other—questions of picking, choosing, and shuffling. T. S. Michael's gem of a book brings this vital but tough-to-teach subject to life using examples from real life and popular culture. Each chapter uses one problem—such as slicing a pizza—to detail key concepts about counting numbers and arranging finite sets. Michael takes a different perspective in tackling each of eight problems and explains them in differing degrees of generality, showing in the process how the same mathematical concepts appear in varied guises and contexts. In doing so, he imparts a broader understanding of the ideas underlying discrete mathematics and helps readers appreciate and understand mathematical thinking and discovery.

This book explains the basic concepts of discrete mathematics and demonstrates how to apply them in largely nontechnical language. The explanations and formulas can be grasped with a basic understanding of linear equations.

An exciting new direction for combinatorics, this book will interest graduate students and researchers working in mathematical subdisciplines requiring the mastery and practice of high-dimensional Ramsey theory.

The exposition concentrates on key concepts and then elementary results concerning these numbers. The reader learns how complex numbers can be used to solve algebraic equations and to understand the geometric interpretation of complex numbers and the operations involving them.

The theoretical parts of the book are augmented with rich exercises and problems at various levels of difficulty. A special feature of the book is the last chapter, a selection of outstanding Olympiad and other important mathematical contest problems solved by employing the methods already presented.

The book reflects the unique experience of the authors. It distills a vast mathematical literature, most of which is unknown to the western public, and captures the essence of an abundant problem culture. The target audience includes undergraduates, high school students and their teachers, mathematical contestants (such as those training for Olympiads or the W. L. Putnam Mathematical Competition) and their coaches, as well as anyone interested in essential mathematics.

Peter Higgins distills centuries of work into one delightful narrative that celebrates the mystery of numbers and explains how different kinds of numbers arose and why they are useful. Full of historical snippets and interesting examples, the book ranges from simple number puzzles and magic tricks, to showing how ideas about numbers relate to real-world problems, such as: How are our bank account details kept secure when shopping over the internet? What are the chances of winning at Russian roulette; or of being dealt a flush in a poker hand?

This fascinating book will inspire and entertain readers across a range of abilities. Easy material is blended with more challenging ideas about infinity and complex numbers, and a final chapter "For Connoisseurs" works through some of the particular claims and examples in the book in mathematical language for those who appreciate a complete explanation.

As our understanding of numbers continues to evolve, this book invites us to rediscover the mystery and beauty of numbers and reminds us that the story of numbers is a tale with a long way to run...

Though the book contains advanced material, such as cryptography on elliptic curves, Goppa codes using algebraic curves over finite fields, and the recent AKS polynomial primality test, the authors' objective has been to keep the exposition as self-contained and elementary as possible. Therefore the book will be useful to students and researchers, both in theoretical (e.g. mathematicians) and in applied sciences (e.g. physicists, engineers, computer scientists, etc.) seeking a friendly introduction to the important subjects treated here. The book will also be useful for teachers who intend to give courses on these topics.

The Handbook of Applied Cryptography provides a treatment that is multifunctional:

It serves as an introduction to the more practical aspects of both conventional and public-key cryptography

It is a valuable source of the latest techniques and algorithms for the serious practitioner

It provides an integrated treatment of the field, while still presenting each major topic as a self-contained unit

It provides a mathematical treatment to accompany practical discussions

It contains enough abstraction to be a valuable reference for theoreticians while containing enough detail to actually allow implementation of the algorithms discussed

Now in its third printing, this is the definitive cryptography reference that the novice as well as experienced developers, designers, researchers, engineers, computer scientists, and mathematicians alike will use.

Appropriate for anyone familiar with algebra at the high-school level, The Theory of Remainders offers a captivating introduction to both number theory and abstract algebra. Both elementary and challenging, it provides a view of mathematics as a conceptual net and illustrates the differences between conceptual and paraconceptual claims—an excellent start to expanding students' perspectives on mathematics.

Exercises throughout the book form an integral part of the text, extending students' experience with the concepts under discussion and presenting opportunities to observe patterns. In addition to the exercises, a series of optional problems allows more advanced readers to further develop the concepts.

Solutions to most principal network reliability problems—including medium-sized computer networks—are presented in the form of efficient Monte Carlo algorithms and illustrated with numerical examples and tables. Written by reliability experts with significant teaching experience, this reader-friendly text is an excellent resource for software engineering, operations research, industrial engineering, and reliability engineering students, researchers, and engineers.

Stressing intuitive explanations and providing detailed proofs of difficult statements, this self-contained resource includes a wealth of end-of-chapter exercises, numerical examples, tables, and offers a solutions manual—making it ideal for self-study and practical use.

Key features of Putnam and Beyond

* Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants.

* Each chapter systematically presents a single subject within which problems are clustered in every section according to the specific topic.

* The exposition is driven by more than 1100 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors.

* Complete solutions to all problems are given at the end of the book. The source, author, and historical background are cited whenever possible.

This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for self-study by undergraduate and graduate students, as well as teachers and researchers in the physical sciences who wish to to expand their mathematical horizons.

The problems are clustered by topic into self-contained sections with solutions provided separately. All sections start with an essay discussing basic facts and one or two representative examples. A list of carefully chosen problems follows and the reader is invited to take them on. Additionally, historical insights and asides are presented to stimulate further inquiry. The emphasis throughout is on encouraging readers to move away from routine exercises and memorized algorithms toward creative solutions to open-ended problems.

Aimed at motivated high school and beginning college students and instructors, this work can be used as a text for advanced problem- solving courses, for self-study, or as a resource for teachers and students training for mathematical competitions and for teacher professional development, seminars, and workshops.

The author collects the main results in the field in this up-to-date, comprehensive reference volume. He highlights significant achievements in the area, and points to research directions and open problems. The book will be of interest to researchers and graduate students in theoretical computer science and mathematics, in particular those working in algebraic combinatorics and combinatorics on words. It will also be of interest to specialists in other branches of mathematics, theoretical physics, and computational biology.

The author collects the main results in the field in this up-to-date, comprehensive reference volume. He highlights significant achievements in the area, and points to research directions and open problems. The book will be of interest to researchers and graduate students in theoretical computer science and mathematics, in particular those working in algebraic combinatorics and combinatorics on words. It will also be of interest to specialists in other branches of mathematics, theoretical physics, and computational biology.

Leading experts have joined forces for the first time to explain the state of the art in quantum computing, hash-based cryptography, code-based cryptography, lattice-based cryptography, and multivariate cryptography. Mathematical foundations and implementation issues are included.

This book is an essential resource for students and researchers who want to contribute to the field of post-quantum cryptography.

The book contains close to150 figures produced with lattice. Many of the examples emphasize principles of good graphical design; almost all use real data sets that are publicly available in various R packages. All code and figures in the book are also available online, along with supplementary material covering more advanced topics.