## Similar Ebooks

Those familiar with mathematics texts will note the fine illustrations throughout and large number of problems offered at the chapter ends. An answer section is provided. Students weary of plodding mathematical prose will find Professor Flanigan's style as refreshing and stimulating as his approach.

Though the Japanese abacus may appear mysterious or even primitive, this intriguing tool is capable of amazing speed and accuracy. it is still widely used throughout the shop and markets of Asia and its popularity shows no sign of decline.

This volume is designed for the student desiring a greater understanding of the abacus and its calculative functions. The text provides thorough explanations of the advanced operations involving negative numbers, decimals, different units of measurement, and square roots. Diagrams illustrate bead manipulation, and numerous exercises provide ample practice.

Concise and easy-to-follow, this book will improve your abacus skills and help you perform calculations with greater efficiency and precision.

The "lost notebook" contains considerable material on mock theta functions and so undoubtedly emanates from the last year of Ramanujan's life. It should be emphasized that the material on mock theta functions is perhaps Ramanujan's deepest work. Mathematicians are probably several decades away from a complete understanding of those functions. More than half of the material in the book is on q-series, including mock theta functions; the remaining part deals with theta function identities, modular equations, incomplete elliptic integrals of the first kind and other integrals of theta functions, Eisenstein series, particular values of theta functions, the Rogers-Ramanujan continued fraction, other q-continued fractions, other integrals, and parts of Hecke's theory of modular forms.

- Includes both polar coordinates and complex numbers, unlike the competition.

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials ForDummies. Now students who are prepping for exams, preparing tostudy new material, or who just need a refresher can have aconcise, easy-to-understand review guide that covers an entirecourse by concentrating solely on the most important concepts. Fromalgebra and chemistry to grammar and Spanish, our expert authorsfocus on the skills students most need to succeed in a subject.

The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression.

In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest.

The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Since many abstractions and generalizations originate with the real line, the author has made it the unifying theme of the text, constructing the real number system from the point of view of a Cauchy sequence (a step which Dr. Sprecher feels is essential to learn what the real number system is).

The material covered in Elements of Real Analysis should be accessible to those who have completed a course in calculus. To help give students a sound footing, Part One of the text reviews the fundamental concepts of sets and functions and the rational numbers. Part Two explores the real line in terms of the real number system, sequences and series of number and the structure of point sets. Part Three examines the functions of a real variable in terms of continuity, differentiability, spaces of continuous functions, measure and integration, and the Fourier series.

An especially valuable feature of the book is the exercises which follow each section. There are over five hundred, ranging from the simple to the highly difficult, each focusing on a concept previously introduced.

Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure.

The book is arranged in four sections, devoted to realizing the universal principle force equals curvature:

Part I: The Euclidean Manifold as a Paradigm

Part II: Ariadne's Thread in Gauge Theory

Part III: Einstein's Theory of Special Relativity

Part IV: Ariadne's Thread in Cohomology

For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum.

Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, DaniellLebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?

Suitable for advanced undergraduates and graduate students in mathematics, this volume's sole prerequisite is a background in measure theory. The distinguished mathematician E. R. Lorch praised the book in the Bulletin of the American Mathematical Society as "an exposition which is always fresh, proofs which are sophisticated, and a choice of subject matter which is certainly timely."

Reading Visual Complex Functions requires no prerequisites except some basic knowledge of real calculus and plane geometry. The text is self-contained and covers all the main topics usually treated in a first course on complex analysis. With separate chapters on various construction principles, conformal mappings and Riemann surfaces it goes somewhat beyond a standard programme and leads the reader to more advanced themes.

In a second storyline, running parallel to the course outlined above, one learns how properties of complex functions are reflected in and can be read off from phase portraits. The book contains more than 200 of these pictorial representations which endow individual faces to analytic functions. Phase portraits enhance the intuitive understanding of concepts in complex analysis and are expected to be useful tools for anybody working with special functions – even experienced researchers may be inspired by the pictures to new and challenging questions.

Visual Complex Functions may also serve as a companion to other texts or as a reference work for advanced readers who wish to know more about phase portraits.

Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, DaniellLebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?

The book is suitable for graduate students, but also for advanced undergraduates, in mathematics and physics.

Contents:

List of Figures

Basic Notation

Choice Principles

Hilbert Spaces

Completeness, Completion and Dimension

Linear Operators

Functionals and Dual Spaces

Fourier Series

Fourier Transform

Fixed Point Theorem

Baire Category Theorem

Uniform Boundedness Principle

Open Mapping Theorem

Closed Graph Theorem

Hahn–Banach Theorem

The Adjoint Operator

Weak Topologies and Reflexivity

Operators in Hilbert Spaces

Spectral Theory of Operators on Hilbert Spaces

Compactness

Bibliography

Index

"...complete, up-to-date coverage of computational complexitytheory...the book promises to become the standard reference oncomputational complexity." -Zentralblatt MATH

A thorough revision based on advances in the field ofcomputational complexity and readers’ feedback, the SecondEdition of Theory of Computational Complexity presentsupdates to the principles and applications essential tounderstanding modern computational complexity theory. The newedition continues to serve as a comprehensive resource on the useof software and computational approaches for solving algorithmicproblems and the related difficulties that can be encountered.

Maintaining extensive and detailed coverage, Theory ofComputational Complexity, Second Edition, examines the theoryand methods behind complexity theory, such as computational models,decision tree complexity, circuit complexity, and probabilisticcomplexity. The Second Edition also features recentdevelopments on areas such as NP-completeness theory, as wellas:

A new combinatorial proof of the PCP theorem based on thenotion of expander graphs, a research area in the field of computerscienceAdditional exercises at varying levels of difficulty to furthertest comprehension of the presented materialEnd-of-chapter literature reviews that summarize each topic andoffer additional sources for further studyTheory of Computational Complexity, Second Edition, is anexcellent textbook for courses on computational theory andcomplexity at the graduate level. The book is also a usefulreference for practitioners in the fields of computer science,engineering, and mathematics who utilize state-of-the-art softwareand computational methods to conduct research.

Athorough revision based on advances in the field of computationalcomplexity and readers’feedback,the Second Edition of Theory of Computational Complexity presentsupdates to theprinciplesand applications essential to understanding modern computationalcomplexitytheory.The new edition continues to serve as a comprehensive resource onthe use of softwareandcomputational approaches for solving algorithmic problems and therelated difficulties thatcanbe encountered.Maintainingextensive and detailed coverage, Theory of ComputationalComplexity, SecondEdition,examines the theory and methods behind complexity theory, such ascomputationalmodels,decision tree complexity, circuit complexity, and probabilisticcomplexity. The SecondEditionalso features recent developments on areas such as NP-completenesstheory, as well as:•A new combinatorial proof of the PCP theorem based on the notion ofexpandergraphs,a research area in the field of computer science•Additional exercises at varying levels of difficulty to furthertest comprehension ofthepresented material•End-of-chapter literature reviews that summarize each topic andoffer additionalsourcesfor further studyTheoryof Computational Complexity, Second Edition, is an excellenttextbook for courses oncomputationaltheory and complexity at the graduate level. The book is also auseful referenceforpractitioners in the fields of computer science, engineering, andmathematics who utilizestate-of-the-artsoftware and computational methods to conduct research.Generations of teachers and students have benefitted from Artin's masterly arguments and precise results. Suitable for advanced undergraduates and graduate students of mathematics, his treatment examines functions, the Euler integrals and the Gauss formula, large values of x and the multiplication formula, the connection with sin x, applications to definite integrals, and other subjects.

The author intended this book not only to develop the basic ideas of Riemann's theory of algebraic functions and their integrals but also to examine the related ideas and theorems with an unprecedented degree of rigor. Weyl's two-part treatment begins by defining the concept and topology of Riemann surfaces and concludes with an exploration of functions of Riemann surfaces. His teachings illustrate the role of Riemann surfaces as not only devices for visualizing the values of analytic functions but also as indispensable components of the theory.

The two-part structure of Applied Complex Variables affords the college instructor maximum classroom flexibility. Once fundamentals are mastered, applications can be studied in any sequence desired. Depending on how many are selected for study, Professor Dettman's impressive text is ideal for either a one- or two-semester course. And, of course, the ambitious student possessing a knowledge of basic calculus will find its straightforward approach rewarding to his independent study efforts.

Applied Complex Variables is a cogent, well-written introduction to an important and exciting branch of advanced mathematics — serving both the theoretical needs of the mathematics specialist and the applied math needs of the physicist and engineer. Students and teachers alike will welcome this timely, moderately priced reissue of a widely respected work.

The author devotes the first four chapters to proofs of classical theorems on boundary values and boundary integral representations of analytic functions in the unit disc, including generalizations to Dirichlet algebras. The fifth chapter contains the factorization theory of Hp functions, a discussion of some partial extensions of the factorization, and a brief description of the classical approach to the theorems of the first five chapters. The remainder of the book addresses the structure of various Banach spaces and Banach algebras of analytic functions in the unit disc.

Enhanced with 100 challenging exercises, a bibliography, and an index, this text belongs in the libraries of students, professional mathematicians, as well as anyone interested in a rigorous, high-level treatment of this topic.

Subsequent chapters explore the basic results of linear functional analysis: Stone-Weierstrass, Hahn-Banach, uniform boundedness and open mapping theorems, dual spaces, and basic properties of operators. Additional topics include function spaces, the Tychonov and Alaoglu theorems, Hilbert spaces, elementary Fourier analysis, and compact self-adjoint operators applied to Sturm-Liouville theory. "The author has a delightfully lively style which makes the book very readable," noted the Edinburgh Mathematical Society, "and there are numerous interesting and instructive problems."

The book takes a motivating approach that makes ideas less abstract to students. It explains how various topics in calculus may seem unrelated but in reality have common roots. Emphasizing historical perspectives, the text gives students a glimpse into the development of calculus and its ideas from the age of Newton and Leibniz to the twentieth century. Nearly 300 examples lead to important theorems as well as help students develop the necessary skills to closely examine the theorems. Proofs are also presented in an accessible way to students.

By strengthening skills gained through elementary calculus, this textbook leads students toward mastering calculus techniques. It will help them succeed in their future mathematical or engineering studies.

Professor Cohn's lucid and insightful book presents an ideal coverage of the subject in five parts. Part I is a review of complex analysis analytic behavior, the Riemann sphere, geometric constructions, and presents (as a review) a microcosm of the course. The Riemann manifold is introduced in Part II and is examined in terms of intuitive physical and topological technique in Part III. In Part IV the author shows how to define real functions on manifolds analogously with the algebraic and analytic points of view outlined here. The exposition returns in Part V to the use of a single complex variable z. As the text is richly endowed with problem material — 344 exercises — the book is perfect for self-study as well as classroom use.

Harvey Cohn is well-known in the mathematics profession for his pedagogically superior texts, and the present book will be of great interest not only to pure and applied mathematicians, but also engineers and physicists. Dr. Cohn is currently Distinguished Professor of Mathematics at the City University of New York Graduate Center.

Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study.

Offers a concise yet rigorous introduction

Requires limited background in control theory or advanced mathematics

Provides a complete proof of the maximum principle

Uses consistent notation in the exposition of classical and modern topics

Traces the historical development of the subject

Solutions manual (available only to teachers)

Leading universities that have adopted this book include:

University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems

Georgia Institute of Technology ECE 6553: Optimal Control and Optimization

University of Pennsylvania ESE 680: Optimal Control Theory

University of Notre Dame EE 60565: Optimal Control

The first eight chapters explore all of the basic topics for training in real analysis, beginning with a review of countable sets before moving on to detailed discussions of measure theory, Lebesgue integration, Banach spaces, functional analysis, and weakly differentiable functions. More topical applications are discussed in the remaining chapters, such as maximal functions, functions of bounded mean oscillation, rearrangements, potential theory, and the theory of Sobolev functions. This second edition has been completely revised and updated and contains a variety of new content and expanded coverage of key topics, such as new exercises on the calculus of distributions, a proof of the Riesz convolution, Steiner symmetrization, and embedding theorems for functions in Sobolev spaces.

Ideal for either classroom use or self-study, Real Analysis is an excellent textbook both for students discovering real analysis for the first time and for mathematicians and researchers looking for a useful resource for reference or review.

Praise for the First Edition:

“[This book] will be extremely useful as a text. There is certainly enough material for a year-long graduate course, but judicious selection would make it possible to use this most appealing book in a one-semester course for well-prepared students.”

—Mathematical Reviews

While retaining the structure of its best-selling predecessor, this second edition includes revisions of many original examples, along with new examples that often reflect the authors’ own vast research experiences and perspectives. This edition also provides many more exercises as well as a solutions manual for qualifying instructors. Each chapter begins with an extensive introduction and concludes with a summary and historical comments that frequently refer to other sources.

New to the Second Edition

Completely revised section on lim sup and lim inf New discussions of connected sets, probability, Bayesian statistical inference, and the generalized (integral) Minkowski inequality New sections on elements of multilinear algebra and determinants, the singular value decomposition theorem, the Cauchy principal value, and Hadamard finite part integrals New example of a Lebesgue non-measurable set

Ideal for a two-semester course, this proven textbook teaches students how to prove theorems and prepares them for further study of more advanced mathematical topics. It helps them succeed in formulating research questions in a mathematically rigorous way.

Originally published in 1972.

The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

The text is geared towards advanced undergraduate and graduate students and is particularly useful for those trying to decide what type of problem to tackle for their dissertation. This book can also serve as a reference for anyone interested in exploring how they can apply graph theory to other parts of mathematics.

The themes treated include Metric Spaces, General Topology, Continuity, Completeness, Compactness, Measure Theory, Integration, Lebesgue Spaces, Hilbert Spaces, Banach Spaces, Linear Operators, Weak and Weak* Topologies.

Suitable both for classroom use and independent reading, this book is ideal preparation for further study in research areas where a broad mathematical toolbox is required.

The author carefully develops the necessary foundations while minimizing the use of technical language. He expertly guides the reader to deep fundamental analysis results, including completeness, key differential equations, definite integrals, Taylor series for standard functions, and the Euler identity. This pioneering book takes the sophisticated reader from simple familiar algebra to the heart of analysis. Furthermore, it should be of interest as a source of new ideas and as supplementary reading for high school teachers, and for students and instructors of calculus and analysis.

In this second edition, I have expanded the material on normed vector spaces and their operators presented in Chapter 1 to include proofs of the Open Mapping Theorem, the Closed Graph Theorem and the Hahn–Banach Theorem.

The material on operators between normed vector spaces is further expanded in a new Chapter 6, which presents the basic elements of the theory of Fredholm operators on general Banach spaces, not only on Hilbert spaces. This requires that we develop the theory of dual operators between Banach spaces to replace the use of adjoint operators between Hilbert spaces.

With the addition of the new material on normed vector spaces and their operators, the book can serve as a general introduction to functional analysis viewed as a theory of infinite dimensional linear spaces and linear operators acting on them.

In the twenty years since the first edition of Applied FunctionalAnalysis was published, there has been an explosion in the numberof books on functional analysis. Yet none of these offers theunique perspective of this new edition. Jean-Pierre Aubin updateshis popular reference on functional analysis with new insights andrecent discoveries-adding three new chapters on set-valued analysisand convex analysis, viability kernels and capture basins, andfirst-order partial differential equations. He presents, for thefirst time at an introductory level, the extension of differentialcalculus in the framework of both the theory of distributions andset-valued analysis, and discusses their application for studyingboundary-value problems for elliptic and parabolic partialdifferential equations and for systems of first-order partialdifferential equations.

To keep the presentation concise and accessible, Jean-Pierre Aubinintroduces functional analysis through the simple Hilbertianstructure. He seamlessly blends pure mathematics with applied areasthat illustrate the theory, incorporating a broad range of examplesfrom numerical analysis, systems theory, calculus of variations,control and optimization theory, convex and nonsmooth analysis, andmore. Finally, a summary of the essential theorems as well asexercises reinforcing key concepts are provided. Applied FunctionalAnalysis, Second Edition is an excellent and timely resource forboth pure and applied mathematicians.

Contents

Complex numbers and functions

Cauchy’s Theorem and Cauchy’s formula

Analytic continuation

Construction and approximation of holomorphic functions

Harmonic functions

Several complex variables

Bergman spaces

The canonical solution operator to

Nuclear Fréchet spaces of holomorphic functions

The -complex

The twisted -complex and Schrödinger operators

MATLAB® is tightly integrated into every portion of this book, and its graphical capabilities are used to present vibrant pictures of curves and surfaces. Readers benefit from the deep connections made between mathematics and science while learning more about the intrinsic geometry of curves and surfaces. With serious yet elementary explanation of various numerical algorithms, this textbook enlivens the teaching of multivariable calculus and mathematical methods courses for scientists and engineers.

Several chapters end with discussions of practical applications and related topics that graduate students and experts in other subjects may find useful for their own purposes. Thus, a further aim of the book is to communicate to non-specialists some concrete facts that may be of value in their own work. The book can also be used as a textbook or a supplementary reference for an advanced graduate course. It is primarily intended for specialists in complex and functional analysis, graduate students, and experts in other related fields.

The only way to understand mathematics is by doing mathematics. The reader will learn the language of axioms and theorems and will write convincing and cogent proofs using quantifiers. Students will solve many puzzles and encounter some mysteries and challenging problems.

The emphasis is on proof. To progress towards mathematical maturity, it is necessary to be trained in two aspects: the ability to read and understand a proof and the ability to write a proof.

The journey begins with elements of logic and techniques of proof, then with elementary set theory, relations and functions. Peano axioms for positive integers and for natural numbers follow, in particular mathematical and other forms of induction. Next is the construction of integers including some elementary number theory. The notions of finite and infinite sets, cardinality of counting techniques and combinatorics illustrate more techniques of proof.

For more advanced readers, the text concludes with sets of rational numbers, the set of reals and the set of complex numbers. Topics, like Zorn’s lemma and the axiom of choice are included. More challenging problems are marked with a star.

All these materials are optional, depending on the instructor and the goals of the course.

This book provides a detailed introduction to Lebesgue measure and integration as well as the classical results concerning integrals of multivariable functions. It examines the concept of the Hausdorff measure, the properties of the area on smooth and Lipschitz surfaces, the divergence formula, and Laplace's method for finding the asymptotic behavior of integrals. The general theory is then applied to harmonic analysis, geometry, and topology. Preliminaries are provided on probability theory, including the study of the Rademacher functions as a sequence of independent random variables.

The book contains more than 600 examples and exercises. The reader who has mastered the first third of the book will be able to study other areas of mathematics that use integration, such as probability theory, statistics, functional analysis, partial probability theory, statistics, functional analysis, partial differential equations and others.

Real Analysis: Measures, Integrals and Applications is intended for advanced undergraduate and graduate students in mathematics and physics. It assumes that the reader is familiar with basic linear algebra and differential calculus of functions of several variables.

Starting from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate some basic stochastic dynamical systems (including dissipative nonlinearities) and Markov semi-groups, paying special attention to their long-time behavior: ergodicity, invariant measure. Here fundamental results like the theorems of Prokhorov, Von Neumann, Krylov-Bogoliubov and Khas'minski are proved. The last chapter is devoted to gradient systems and their asymptotic behavior.