## Similar

The book first elaborates on alternating chain methods, average height of planted plane trees, and numbering of a graph. Discussions focus on numbered graphs and difference sets, Euclidean models and complete graphs, classes and conditions for graceful graphs, and maximum matching problem. The manuscript then elaborates on the evolution of the path number of a graph, production of graphs by computer, and graph-theoretic programming language. Topics include FORTRAN characteristics of GTPL, design considerations, representation and identification of graphs in a computer, production of simple graphs and star topologies, and production of stars having a given topology.

The manuscript examines the entropy of transformed finite-state automata and associated languages; counting hexagonal and triangular polyominoes; and symmetry of cubical and general polyominoes. Graph coloring algorithms, algebraic isomorphism invariants for graphs of automata, and coding of various kinds of unlabeled trees are also discussed.

The publication is a valuable source of information for researchers interested in graph theory and computing.

This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams.

Get down to the basics — get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals

Conquer proofs with confidence — follow easy-to-grasp instructions for understanding the components of a formal geometry proof

Take triangles in strides — learn how to take in a triangle's sides, analyze its angles, work through an SAS proof, and apply the Pythagorean Theorem

Polish up on polygons — get the lowdown on quadrilaterals and other polygons: their angles, areas, properties, perimeters, and much more

Open the book and find:

Plain-English explanations of geometry terms

Tips for tackling geometry proofs

The seven members of the quadrilateral family

Straight talk on circles

Essential triangle formulas

The lowdown on 3-D: spheres, cylinders, prisms, and pyramids

Ten things to use as reasons in geometry proofs

Learn to:

Core concepts about the geometry of shapes and geometry proofs

Critical theorems, postulates, and definitions

The principles and formulas you need to know

Fortunately, there's Schaum's. This all-in-one-package includes more than 650 fully solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 25 detailed videos featuring Math instructors who explain how to solve the most commonly tested problems--it's just like having your own virtual tutor! You'll find everything you need to build confidence, skills, and knowledge for the highest score possible.

More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

This Schaum's Outline gives you

665 fully solved problems Concise explanations of all geometry concepts Support for all major textbooks for geometry coursesFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!

Hollywood actress and math whiz Danica McKellar has completely shattered the “math nerd” stereotype. For years, she’s been showing girls how to feel confident and ace their math classes – with style! With Girls Get Curves, she applies her winning techniques to high school geometry, giving readers the tools they need to feel great and totally “get” everything from congruent triangles to theorems, and more. Inside you’ll find:

· Time-saving tips and tricks for homework and tests

· Illuminating practice problems (and proofs!) with detailed solutions

· Totally relatable real-world examples

· True stories from Danica’s own life as an actress and math student

· A Troubleshooting Guide, for getting unstuck during even the trickiest proofs!

With Danica as a coach, girls everywhere can stop hiding from their homework and watch their scores rise!

Part of the reason for the book's success is its marvelously varied assortment of brainteasers ranging from simple "catch" riddles to difficult problems (none, however, requiring advanced mathematics). Many of the puzzles will be new to Western readers, while some familiar problems have been clothed in new forms. Often the puzzles are presented in the form of charming stories that provide non-Russian readers with valuable insights into contemporary Russian life and customs. In addition, Martin Gardner, former editor of the Mathematical Games Department, Scientific American, has clarified and simplified the book to make it as easy as possible for an English-reading public to understand and enjoy. He has been careful, moreover, to retain nearly all the freshness, warmth, and humor of the original.

Lavishly illustrated with over 400 clear diagrams and amusing sketches, this inexpensive edition of the first English translation will offer weeks or even months of stimulating entertainment. It belongs in the library of every puzzlist or lover of recreational mathematics.

About the Book

Established as a successful practical workbook series with more than 20 titles in the language learning category, Practice Makes Perfect now provides the same clear, concise approach and extensive exercises to key fields within mathematics. The key to the Practice Makes Perfect series is the extensive exercises that provide learners with all the practice they need for mastery.

How many Hobbits joined the Fellowship of the Ring?

What colour is the Orcs’ skin?

Why did Gandalf have difficulty in opening the West-door of Khazad-dum?

Who betrayed Berien and Luthien to Thingol?

What was Farmer Giles’ full name?

The worlds of J.R.R. Tolkien, from the saga of Middle-earth to a brief visit to Wootton Major, are so rich and varied that they inspire legions of followers of different ages. This peerless revised and expanded quiz book offers over 1,200 questions and answers, including easy starter questions and more difficult tie-breakers, to test the range and depth of your knowledge. And whereas every right answer will confirm your mastery over your subject, every wrong answer will be a learning experience all of its own!

This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A few new topics have been added, notably Sard’s theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures.

Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.

Pit your wits against the people who cracked Enigma in the official puzzle book from Britain's secretive intelligence organisation, GCHQ.

'A fiendish work, as frustrating, divisive and annoying as it is deeply fulfilling: the true spirit of Christmas' Guardian

'Surely the trickiest puzzle book in years. Crack these fiendish problems and Trivial Pursuit should be a doddle' Daily Telegraph

If 3=T, 4=S, 5=P, 6=H, 7=H ... what is 8?

What is the next letter in the sequence: M, V, E, M, J, S, U, ?

Which of the following words is the odd one out: CHAT, COMMENT, ELF, MANGER, PAIN, POUR?

GCHQ is a top-secret intelligence and security agency which recruits some of the very brightest minds. Over the years, their codebreakers have helped keep our country safe, from the Bletchley Park breakthroughs of WWII to the modern-day threat of cyberattack. So it comes as no surprise that, even in their time off, the staff at GCHQ love a good puzzle. Whether they're recruiting new staff or challenging each other to the toughest Christmas quizzes and treasure hunts imaginable, puzzles are at the heart of what GCHQ does. Now they're opening up their archives of decades' worth of codes, puzzles and challenges for everyone to try.

In this book you will find:

- Tips on how to get into the mindset of a codebreaker

- Puzzles ranging in difficulty from easy to brain-bending

- A competition section where we search for Britain's smartest puzzler

Good luck!

'Ideal for the crossword enthusiast' Daily Telegraph

As grandfather and grandson struggle with the question of whether there can ever be absolute certainty in mathematics or life, they are forced to reconsider their fundamental beliefs and choices. Their stories hinge on their explorations of parallel developments in the study of geometry and infinity--and the mathematics throughout is as rigorous and fascinating as the narrative and characters are compelling and complex.

Moving and enlightening, A Certain Ambiguity is a story about what it means to face the extent--and the limits--of human knowledge.

From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map.

Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast.

Can geometry be exciting?

It can for those who can appreciate the beauty of numbers and their relationships.

This book contains a meticulous geometric investigation of the 5 Platonic Solids and 5 other important polyhedra, as well as reference charts for each solid.

Poly (many) hedron (face) means "many faces." Polyhedra are 3 dimensional figures with 4 or more faces, or sides. These polyhedra are reflections of Nature herself, and a study of them provides insight into the way the world is structured. Nature is not only beautiful, but highly intelligent. As you explore the polyhedra in this book, this will become apparent over and over again.

The book contains a geometric explanation of the Phi Ratio and Fibonacci series, and a detailed analysis of the pentagon, which forms the basis for many of these solids. The pentagon is composed entirely of Phi relationships, and is integral to a proper understanding of sacred geometry.

With over 140 full-color illustrations, this book is perfect for teachers and students of geometry alike. It is a must for those who are serious about sacred geometry.

This book is dedicated to those who can appreciate the logic of numbers and the beauty of nature, for they are both aspects of the same unifying principle.

Prerequisites: knowledge of simple algebra and elementary trigonometry. No brainiac math skills required! Only the ability to appreciate nature's own logic.

Book #1 in the Geometric Explorations Series

From Loving Healing Press (www.LovingHealing.com)

* The only desktop geometrical tolerancing reference

* For all CAD users, engineers, designers, drafting professionals and anyone who needs to specify or interpret product specifications to international standards

* Simple and quick to use, visually indexed, large format presentation for ease of use

- how to balance a coin on the edge of a dollar bill

- pick a cup up with a balloon

- balance two forks and a matchstick on your fingertip

- separate two glasses without touching them

In explaining the bets, Wiseman also explains the science behind them making what at first seems mystifying as natural as the laws of gravity. Let YouTube sensation Richard Wiseman turn you into one of those smart people who can say "I'll bet I can..." and know that you'll never lose.

The present volume contains a rich selection of 70 of the best of these brain teasers, in some cases including references to new developments related to the puzzle. Now enthusiasts can challenge their solving skills and rattle their egos with such stimulating mind-benders as The Returning Explorer, The Mutilated Chessboard, Scrambled Box Tops, The Fork in the Road, Bronx vs. Brooklyn, Touching Cigarettes, and 64 other problems involving logic and basic math. Solutions are included.

For anyone that has ever jumped for joy after clearing that tricky level, battled the bothersome Chocolate, or done a happy-dance when they created a Color Bomb; this is the guide for you.

This comprehensive insiders guide offers readers an in-depth insight into the Candy Kingdom and Dreamworld, including mastering the mechanics of the game, plus exclusive tips and strategies for clearing the most challenging levels. It's Delicious!

One of the most difficult situations in chess is seeing potential mates in the near future. All players, even grandmasters and champions, have missed such mates in actual play, to their chagrin and the bystanders' delight, for all too often it is easier to play for momentary advantage than to force a mate.

This book by two former national chess champions of France provides a rational classification of mating situations, and shows how each possible type of mate has emerged with its variants in actual play. In an examination of 127 games, the authors identify 23 kinds of mate and show you the rationale for each. These include among others Legal's pseudo sacrifice, the double check, the smothered mate, Greco's mate, the Corridor mate, Anderssen's mate, Morphy's mate, mates with heavy and minor pieces, the mate of two bishops, of two knights, and many more. Review quizzes with answers are included, so that you can gauge your progress.

Since this book analyzes ideas rather than setting memorization tasks, it will enable you to see basic patterns, give direction to your game from the earliest moves, help you to foresee forced mates and counter effectively, and most important, improve your style of play so that you can force mate.

"The Art of the Checkmate will surely be a valuable addition to the library of any chess fan."— Springfield Republican

"This book covers many interesting topics not usually covered in a present day undergraduate course, as well as certain basic topics such as the development of the calculus and the solution of polynomial equations. The fact that the topics are introduced in their historical contexts will enable students to better appreciate and understand the mathematical ideas involved...If one constructs a list of topics central to a history course, then they would closely resemble those chosen here."

(David Parrott, Australian Mathematical Society)

"The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community."

(European Mathematical Society)

"Since Stillwell treats many topics, most mathematicians will learn a lot from this book as well as they will find pleasant and rather clear expositions of custom materials. The book is accessible to students that have already experienced calculus, algebra and geometry and will give them a good account of how the different branches of mathematics interact."

(Denis Bonheure, Bulletin of the Belgian Society)

This third edition includes new chapters on simple groups and combinatorics, and new sections on several topics, including the Poincare conjecture. The book has also been enriched by added exercises.

These three-dimensional models are created from a number of small pieces of paper that are easily folded and then cleverly fit together to form a spectacular shape. They range from paper polyhedra to bristling buckyballs that are reminiscent of sea urchins—to ornate flower-like spheres.

Each piece of paper is held by the tension of the other papers—demonstrating the remarkable hidden properties of paper, which is at the same time flexible but also strong!

Author Byriah Loper has been creating modular origami sculptures for just five years, but in that time, he's pushed the upper limits of the art form with some of the largest, most complex geometric paper constructions ever assembled. While many geo-modular origami artists focus on creating dense floral spheres, Byriah has pioneered the open, linear "wire frame" approach, which results in a very complex-looking model that reveals the interior of its form. He exhibits his sculptures annually at the Origami USA convention in New York, and was recently a featured artist at the "Surface to Structure" exhibition at the Cooper Union gallery in the East Village.

A great way to learn origami, the easy-to-follow diagrams and step-by-step instructions in this book show you how to fold the paper components and then assemble them to create 22 incredible models. Each model is a new challenge, and the paper sculptures you create look fantastic on your desk or shelf!

The main focus is on manifolds in Euclidean space and the metric properties they inherit from it. Among the topics discussed are curvature and how it affects the shape of space, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.

"In the world of mathematics, the 1980's might well be described as the "decade of the fractal". Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology...the book also contains many good illustrations of fractals (including 16 color plates)."

Mathematics Teaching

"The book can be recommended to students who seriously want to know about the mathematical foundation of fractals, and to lecturers who want to illustrate a standard course in metric topology by interesting examples."

Christoph Bandt, Mathematical Reviews

"...not only intended to fit mathematics students who wish to learn fractal geometry from its beginning but also students in computer science who are interested in the subject. Especially, for the last students the author gives the required topics from metric topology and measure theory on an elementary level. The book is written in a very clear style and contains a lot of exercises which should be worked out."

H.Haase, Zentralblatt

About the second edition: Changes throughout the text, taking into account developments in the subject matter since 1990; Major changes in chapter 6. Since 1990 it has become clear that there are two notions of dimension that play complementary roles, so the emphasis on Hausdorff dimension will be replaced by the two: Hausdorff dimension and packing dimension. 6.1 will remain, but a new section on packing dimension will follow it, then the old sections 6.2--6.4 will be re-written to show both types of dimension; Substantial change in chapter 7: new examples along with recent developments; Sections rewritten to be made clearer and more focused.

Key features:

* Gradual progression in problem difficulty builds and strengthens mathematical skills and techniques

* Basic topics include trigonometric formulas and identities, their applications in the geometry of the triangle, trigonometric equations and inequalities, and substitutions involving trigonometric functions

* Problem-solving tactics and strategies, along with practical test-taking techniques, provide in-depth enrichment and preparation for possible participation in various mathematical competitions

* Comprehensive introduction (first chapter) to trigonometric functions, their relations and functional properties, and their applications in the Euclidean plane and solid geometry expose advanced students to college level material

103 Trigonometry Problems is a cogent problem-solving resource for advanced high school students, undergraduates, and mathematics teachers engaged in competition training.

Other books by the authors include 102 Combinatorial Problems: From the Training of the USA IMO Team (0-8176-4317-6, 2003) and A Path to Combinatorics for Undergraduates: Counting Strategies (0-8176-4288-9, 2004).

The next chapter is an introduction to real and complex manifolds. It contains an exposition of the theorem of Frobenius, the lemmata of Poincaré and Grothendieck with applications of Grothendieck's lemma to complex analysis, the imbedding theorem of Whitney and Thom's transversality theorem.

Chapter 3 includes characterizations of linear differentiable operators, due to Peetre and Hormander. The inequalities of Garding and of Friedrichs on elliptic operators are proved and are used to prove the regularity of weak solutions of elliptic equations. The chapter ends with the approximation theorem of Malgrange-Lax and its application to the proof of the Runge theorem on open Riemann surfaces due to Behnke and Stein.

Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure.

The book is arranged in four sections, devoted to realizing the universal principle force equals curvature:

Part I: The Euclidean Manifold as a Paradigm

Part II: Ariadne's Thread in Gauge Theory

Part III: Einstein's Theory of Special Relativity

Part IV: Ariadne's Thread in Cohomology

For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum.

Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

Elements of Topology provides a basic introduction to point-set topology and algebraic topology. It is intended for advanced undergraduate and beginning graduate students with working knowledge of analysis and algebra. Topics discussed include the theory of convergence, function spaces, topological transformation groups, fundamental groups, and covering spaces.

The author makes the subject accessible by providing more than 250 worked examples and counterexamples with applications. The text also includes numerous end-of-section exercises to put the material into context.

This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.

This book will prove useful to undergraduate trigonometric students.

The University of Toronto Undergraduate Competition was founded to provide additional competition experience for undergraduates preparing for the Putnam competition, and is particularly useful for the freshman or sophomore undergraduate. Lecturers, instructors, and coaches for mathematics competitions will find this presentation useful. Many of the problems are of intermediate difficulty and relate to the first two years of the undergraduate curriculum. The problems presented may be particularly useful for regular class assignments. Moreover, this text contains problems that lie outside the regular syllabus and may interest students who are eager to learn beyond the classroom.

While containing all the key results of basic topology, Essential Topology never allows itself to get mired in details. Instead, the focus throughout is on providing interesting examples that clarify the ideas and motivate the student, reflecting the fact that these are often the key examples behind current research.

With chapters on:

continuity and topological spaces deconstructionist topology the Euler number homotopy groups including the fundamental group simplicial and singular homology, and fibre bundlesEssential Topology contains enough material for two semester-long courses, and offers a one-stop-shop for undergraduate-level topology, leaving students motivated for postgraduate study in the field, and well-prepared for it.

The exposition concentrates on key concepts and then elementary results concerning these numbers. The reader learns how complex numbers can be used to solve algebraic equations and to understand the geometric interpretation of complex numbers and the operations involving them.

The theoretical parts of the book are augmented with rich exercises and problems at various levels of difficulty. A special feature of the book is the last chapter, a selection of outstanding Olympiad and other important mathematical contest problems solved by employing the methods already presented.

The book reflects the unique experience of the authors. It distills a vast mathematical literature, most of which is unknown to the western public, and captures the essence of an abundant problem culture. The target audience includes undergraduates, high school students and their teachers, mathematical contestants (such as those training for Olympiads or the W. L. Putnam Mathematical Competition) and their coaches, as well as anyone interested in essential mathematics.

Though the book contains advanced material, such as cryptography on elliptic curves, Goppa codes using algebraic curves over finite fields, and the recent AKS polynomial primality test, the authors' objective has been to keep the exposition as self-contained and elementary as possible. Therefore the book will be useful to students and researchers, both in theoretical (e.g. mathematicians) and in applied sciences (e.g. physicists, engineers, computer scientists, etc.) seeking a friendly introduction to the important subjects treated here. The book will also be useful for teachers who intend to give courses on these topics.

Meet JJ, an unusual character with a unique vantage position from which he can measure and monitor humanity’s progress. Armed with a device that compels all around it to tell the truth, JJ offers a satirical evaluation of our attitudes to numeracy and logic, touching upon several aspects of life on Earth along the way, from the criminal justice system and people’s use of language to highway driving and modern art.

A collection of mathematically-flavored stories and jokes, interlaced with puzzles, paradoxes and problems, fuse together in an entertaining, free-flowing narrative that will engage and amuse anyone with an interest in the issues confronting society today. JJ demonstrates how a lack of elementary mathematical knowledge can taint our work and general thinking and reflects upon the importance of what is arguably our most valuable weapon against ignorance: a sound mathematical education.

What is JJ’s prognosis for our future? There’s only one way to find out...

"Numbers, logic, human behavior and aliens: this unique book blends them all into a captivating narrative of serious talk and satire, where wit and scholarly details are counterpointed by instructive puzzles and mathematical fun. A ‘must read’ for anybody who appreciates humor and culture."

Stanislav Potapenko, Department of Civil and Environmental Engineering, University of Waterloo, Canada

"... a real delight. Constanda has managed to intertwine stories, puzzles, logic and some very rich mathematics concepts into a very readable, enjoyable novel... I believe this book should be in the personal library of every high school mathematics teacher."

Tom Becvar, St Louis University High School, USA

"...a highly readable, unique and fascinating combination of humor, mathematics and social commentary that is factual, educational and, more importantly, understandable. Given what is taking place in today’s society, J.J. Moon brings mathematics back to earth! I’ll never go through the car buying process again without thinking about SCAM 16!"

Jerry Hoopert, VP / Chief Administrative Officer, Tulsa Teachers Credit Union, USA

Key features:

* Begins with a brief survey of basic notions in algebraic and differential geometry, Lie groups and Lie algebras

* Examines how, in a new chapter, Clifford algebra is relevant to robot kinematics and Euclidean geometry in 3D

* Introduces mathematical concepts and methods using examples from robotics

* Solves substantial problems in the design and control of robots via new methods

* Provides solutions to well-known enumerative problems in robot kinematics using intersection theory on the group of rigid body motions

* Extends dynamics, in another new chapter, to robots with end-effector constraints, which lead to equations of motion for parallel manipulators

Geometric Fundamentals of Robotics serves a wide audience of graduate students as well as researchers in a variety of areas, notably mechanical engineering, computer science, and applied mathematics. It is also an invaluable reference text.

-----

From a Review of the First Edition:

"The majority of textbooks dealing with this subject cover various topics in kinematics, dynamics, control, sensing, and planning for robot manipulators. The distinguishing feature of this book is that it introduces mathematical tools, especially geometric ones, for solving problems in robotics. In particular, Lie groups and allied algebraic and geometric concepts are presented in a comprehensive manner to an audience interested in robotics. The aim of the author is to show the power and elegance of these methods as they apply to problems in robotics."

--MathSciNet

Key features of Putnam and Beyond

* Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants.

* Each chapter systematically presents a single subject within which problems are clustered in every section according to the specific topic.

* The exposition is driven by more than 1100 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors.

* Complete solutions to all problems are given at the end of the book. The source, author, and historical background are cited whenever possible.

This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for self-study by undergraduate and graduate students, as well as teachers and researchers in the physical sciences who wish to to expand their mathematical horizons.

The problems are clustered by topic into self-contained sections with solutions provided separately. All sections start with an essay discussing basic facts and one or two representative examples. A list of carefully chosen problems follows and the reader is invited to take them on. Additionally, historical insights and asides are presented to stimulate further inquiry. The emphasis throughout is on encouraging readers to move away from routine exercises and memorized algorithms toward creative solutions to open-ended problems.

Aimed at motivated high school and beginning college students and instructors, this work can be used as a text for advanced problem- solving courses, for self-study, or as a resource for teachers and students training for mathematical competitions and for teacher professional development, seminars, and workshops.

Based on Mlodinow's extensive historical research; his studies alongside colleagues such as Richard Feynman and Kip Thorne; and interviews with leading physicists and mathematicians such as Murray Gell-Mann, Edward Witten, and Brian Greene, Euclid's Window is an extraordinary blend of rigorous, authoritative investigation and accessible, good-humored storytelling that makes a stunningly original argument asserting the primacy of geometry. For those who have looked through Euclid's Window, no space, no thing, and no time will ever be quite the same.