## Similar

The book includes the micro-scale, the meso-scale and the macro-scale, and the chapters follow this classification. The book explains in detail many tricks of the trade of some of the most important methods and techniques that are used to simulate materials on the perspective levels of spatial and temporal resolution. Case studies are included to further illustrate some methods or theoretical considerations. Example applications for all techniques are provided, some of which are from the author’s own contributions to some of the research areas.

The second edition has been expanded by new sections in computational models on meso/macroscopic scales for ocean and atmosphere dynamics. Numerous applications in environmental physics and geophysics had been added.

An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, spectral collocation, finite element ideas, and Clenshaw-Curtis quadrature, are presented from an introductory perspective, and theSecond Edition also features: Chapters and sections that begin with basic, elementary material followed by gradual coverage of more advanced material Exercises ranging from simple hand computations to challenging derivations and minor proofs to programming exercises Widespread exposure and utilization of MATLAB® An appendix that contains proofs of various theorems and other material

It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples.

Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors.

The book covers key foundation topics:

o Taylor series methods

o Runge--Kutta methods

o Linear multistep methods

o Convergence

o Stability

and a range of modern themes:

o Adaptive stepsize selection

o Long term dynamics

o Modified equations

o Geometric integration

o Stochastic differential equations

The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

The extensively revised second edition provides further clarification of matters that typically give rise to difficulty in the classroom and restructures the chapters on logic to emphasize the role of consequence relations and higher-level rules, as well as including more exercises and solutions.

Topics and features: teaches finite mathematics as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear away confusions; provides numerous exercises, with selected solutions, to test and deepen the reader’s understanding.

This clearly-written text/reference is a must-read for first-year undergraduate students of computing. Assuming only minimal mathematical background, it is ideal for both the classroom and independent study.

This book presents an overview of the technological advances that have occurred since the publication of the Editors earlier book High Voltage Vacuum Insulation: The Physical Basis. In this latest book, contributions from internationally recognized professionals and researchers in the field provide expanded treatment of the practical aspects of the subject. High Voltage Vacuum Insulation: Basic Concepts and Technological Practice provides a modern working manual for this specialized technology that is generic to a wide range of applications. The format makes the text suitable for use as a basis for special topic lecture courses at either the undergraduate or graduate level.

Provides the fundamental physical concepts of the subjectFocuses on practical applicationsGives a historical survey of the fieldIncludes a detailed account of system design criteriaReviews theoretical models developed to explain the pinhole phenomenaPresents results of a series of experimental investigations on the subjectIn order to be able to reflect the development of today's science and to cover all modern aspects of thin films, the series, starting with Volume 20, has moved beyond the basic physics of thin films. It now addresses the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Therefore, in order to reflect the modern technology-oriented problems, the title has been slightly modified from Physics of Thin Films to Thin Films.

This volume, part of the Thin Films Series, has been wholly written by two authors instead of showcasing several edited manuscripts.

This concise and easy-to-read textbook/reference presents an algorithmic approach to mathematical analysis, with a focus on modelling and on the applications of analysis. Fully integrating mathematical software into the text as an important component of analysis, the book makes thorough use of examples and explanations using MATLAB, Maple, and Java applets. Mathematical theory is described alongside the basic concepts and methods of numerical analysis, supported by computer experiments and programming exercises, and an extensive use of figure illustrations.

Topics and features: thoroughly describes the essential concepts of analysis, covering real and complex numbers, trigonometry, sequences and series, functions, derivatives and antiderivatives, definite integrals and double integrals, and curves; provides summaries and exercises in each chapter, as well as computer experiments; discusses important applications and advanced topics, such as fractals and L-systems, numerical integration, linear regression, and differential equations; presents tools from vector and matrix algebra in the appendices, together with further information on continuity; includes definitions, propositions and examples throughout the text, together with a list of relevant textbooks and references for further reading; supplementary software can be downloaded from the book’s webpage at www.springer.com.

This textbook is essential for undergraduate students in Computer Science. Written to specifically address the needs of computer scientists and researchers, it will also serve professionals looking to bolster their knowledge in such fundamentals extremely well.

assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems, with solutions as well as further supplementary material available free to lecturers from the Wiley-VCH website.

methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and

methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.

As a result, the book represents a blend of new methods in general computational analysis,

and specific, but also generic, techniques for study of systems theory ant its particular

branches, such as optimal filtering and information compression.

- Best operator approximation,

- Non-Lagrange interpolation,

- Generic Karhunen-Loeve transform

- Generalised low-rank matrix approximation

- Optimal data compression

- Optimal nonlinear filtering

Multigrid methods are invaluable to researchers in scientific disciplines including physics, chemistry, meteorology, fluid and continuum mechanics, geology, biology, and all engineering disciplines. They are also becoming increasingly important in economics and financial mathematics.

Readers are presented with an invaluable summary covering 25 years of practical experience acquired by the multigrid research group at the Germany National Research Center for Information Technology. The book presents both practical and theoretical points of view.

* Covers the whole field of multigrid methods from its elements up to the most advanced applications

* Style is essentially elementary but mathematically rigorous

* No other book is so comprehensive and written for both practitioners and students

Engineering Informatics: Fundamentals of Computer-Aided Engineering, 2nd Edition provides the foundation knowledge of computing that is essential for all engineers. This knowledge is independent of hardware and software characteristics and thus, it is expected to remain valid throughout an engineering career. This Second Edition is enhanced with treatment of new areas such as network science and the computational complexity of distributed systems.

Key features:

Provides extensive coverage of almost all aspects of Computer-Aided Engineering, outlining general concepts such as fundamental logic, definition of engineering tasks and computational complexity Every chapter revised and expanded following more than ten years of experience teaching courses on the basis of the first edition Covers numerous representation frameworks and reasoning strategies Considers the benefits of increased computational power, parallel computing and cloud computing Offers many practical engineering examples and exercises, with lecture notes available for many of the topics/chapters from the ASCE Technical Council on Computing and Information Technology, Global Centre of Excellence in Computing (www.asceglobalcenter.org), providing a valuable resource for lecturers. Accompanied by a website hosting updates and solutionsEngineering Informatics: Fundamentals of Computer-Aided Engineering, 2nd Edition provides essential knowledge on computing theory in engineering contexts for students, researchers and practising engineers.

". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises."—Zentralblatt MATH

". . . carefully structured with many detailed worked examples."—The Mathematical Gazette

The Second Edition of the highly regarded An Introduction to Numerical Methods and Analysis provides a fully revised guide to numerical approximation. The book continues to be accessible and expertly guides readers through the many available techniques of numerical methods and analysis.

An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, spectral collocation, finite element ideas, and Clenshaw-Curtis quadrature, are presented from an introductory perspective, and the Second Edition also features:

Chapters and sections that begin with basic, elementary material followed by gradual coverage of more advanced material Exercises ranging from simple hand computations to challenging derivations and minor proofs to programming exercises Widespread exposure and utilization of MATLAB An appendix that contains proofs of various theorems and other materialThe book is an ideal textbook for students in advanced undergraduate mathematics and engineering courses who are interested in gaining an understanding of numerical methods and numerical analysis.

In a remarkable career spanning more than six decades, Philip W Anderson has made many fundamental contributions to physics. As codified in his oft-quoted phrase "More is Different", Anderson has been the most forceful and persuasive proponent of the radical, but now ubiquitous, viewpoint of emergent phenomena: truly fundamental concepts that can and do emerge from studies of Nature at each layer of complexity or energy scale. Anderson''s ideas have also extended deeply into other areas of physics, including the Anderson–Higgs mechanism and the dynamics of pulsars.

PWA90: A Lifetime of Emergence is a volume of original scientific essays and personal reminiscences of Philip W Anderson by experts in the field, that were presented as part of "PWA90: Emergent Frontiers of Condensed Matter" meeting held at Princeton in December 2013 to highlight Anderson''s contributions to physics.

Contents: Recollections of a Graduate Student (Khandker A Muttalib)P W Anderson Seen Through the Eyes of a Student (Clare C Yu)Random Walks in Anderson''s Garden: A Journey from Cuprates to Cooper Pair Insulators and Beyond (G Baskaran)Some Reminiscences on Anderson Localization (Elihu Abrahams)Anderson and Condensed Matter Physics (T V Ramakrishnan)Superfluidity and Symmetry Breaking — An Anderson Living Legacy (Frank Wilczek)Phil Anderson and Gauge Symmetry Breaking (Edward Witten)A Short History of the Theory and Experimental Discovery of Superfluidity in 3He (W F Brinkman)Superconductivity in a Terrestrial Liquid: What Would It Be Like? (A J Leggett)40 Years of Quantum Spin Liquid: A Tale of Emergence from Frustration (Patrick A Lee)High Tc Superconductivity and RVB (Mohit Randeria)Paired Insulators and High Temperature Superconductors (T H Geballe and S A Kivelson)Special Properties of High Tc Cuprates, Radically Different from Other Transition Metal Oxides (T M Rice)From Bacteria to Artificial Cells, the Problem of Self-Reproduction (Albert Libchaber)Spin Glasses and Frustration (Scott Kirkpatrick)Frustration and Fluctuations in Systems with Quenched Disorder (D L Stein)Phil Anderson''s Magnetic Ideas in Science (Piers Coleman)Readership: Students, academics and researchers in condensed matter.

Keywords:P W Anderson;Superfluidity;Anderson–Higgs Mechanism;Pulsars;Condensed Matter Physics;Anderson;Localization;High-Temperature Superconductors;Spin Classes'

The applied techniques include those that arise in the present literature. The supporting mathematical theory includes the general convergence theory. This material should be readily accessible to students with basic knowledge of mathematical analysis, Lebesgue measure and the basics of Hilbert spaces and Banach spaces. Nevertheless, we have made the book free standing in most respects. Most importantly, the terminology is introduced, explained and developed as needed.

The examples presented are taken from multiple vital application areas including finance, aerospace, mathematical biology and fluid mechanics. The text may be used as the basis for several distinct lecture courses or as a reference. For instance, this text will support a general applications course or an FEM course with theory and applications. The presentation of material is empirically-based as more and more is demanded of the reader as we progress through the material. By the end of the text, the level of detail is reminiscent of journal articles. Indeed, it is our intention that this material be used to launch a research career in numerical PDE.

Contents:Modeling and Visualization:Some PreliminariesProblems with Closed Form SolutionNumerical Solutions to Steady-State ProblemsPopulation ModelsTransient Problems in One Spatial DimensionTransient Problems in Two Spatial DimensionsMethods and Theory:Finite Difference MethodFinite Element Method, the TechniquesFinite Element Method, the TheoryCollocation Method

Readership: Graduate students and researchers.

Key Features:There is no text/reference book that covers as broad a list of techniques as completely and as efficientlyWe accomplish this by judiciously selecting preliminary material that is essential

The text discusses the practical aspects of building a confocal scanning optical microscope or optical interference microscope, and the applications of these microscopes to phase imaging, biological imaging, and semiconductor inspection and metrology.A comprehensive theoretical discussion of the depth and transverse resolution is given with emphasis placed on the practical results of the theoretical calculations and how these can be used to help understand the operation of these microscopes.

Provides a comprehensive introduction to the field of scanning optical microscopy for scientists and engineersExplains many practical applications of scanning optical and interference microscopy in such diverse fields as biology and semiconductor metrologyDiscusses in theoretical terms the origin of the improved depth and transverse resolution of scanning optical and interference microscopes with emphasis on the practical results of the theoretical calculationsConsiders the practical aspects of building a confocal scanning or interference microscope and explores some of the design tradeoffs made for microscopes used in various applicationsDiscusses the theory and design of near-field optical microscopesExplains phase imaging in the scanning optical and interference microscopesThe overall layout of the book is similar to that of the previous two editions however, there are considerable changes in emphasis and several key additions including:

•up-to-date presentation of modern theories of liquid-vapour coexistence and criticality

•areas of considerable present and future interest such as super-cooled liquids and the glass transition

•the area of liquid metals, which has grown into a mature subject area, now presented as part of the chapter ionic liquids

•Provides cutting-edge research in the principles of liquid-state theory

•Includes frequent comparisons of theoretical predictions with experimental and simulation data

•Suitable for researchers and post-graduates in the field of condensed matter science (Physics, Chemistry, Material Science), biophysics as well as those in the oil industry

The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental data. The subjects dealt with include:

- electronic transport theory based on the test-particle and correlation-function concepts;

- scattering by phonons, impurities, surfaces, magnons, dislocations, electron-electron scattering and electron temperature;

- two-phonon scattering, spin-flip scattering, scattering in degenerate and many-band models.

This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourier Series and the Fourier Integral, Bessel Functions and Fourier-Bessel Series, and the Eigenfunction Method and its Applications to Mathematical Physics. Every chapter moves clearly from topic to topic and theorem to theorem, with many theorem proofs given. A total of 107 problems will be found at the ends of the chapters, including many specially added to this English-language edition, and answers are given at the end of the text. Richard Silverman's excellent translation makes this book readily accessible to mathematicians and math students, as well as workers and students in the fields of physics and engineering. He has also added a bibliography, containing suggestions for collateral and supplementary reading. 1962 edition.

CMOS Processors and Memories is divided into two parts: processors and memories. In the first part we start with high performance, low power processor design, followed by a chapter on multi-core processing. They both represent state-of-the-art concepts in current computing industry. The third chapter deals with asynchronous design that still carries lots of promise for future computing needs. At the end we present a “hardware design space exploration” methodology for implementing and analyzing the hardware for the Bayesian inference framework. This particular methodology involves: analyzing the computational cost and exploring candidate hardware components, proposing various custom architectures using both traditional CMOS and hybrid nanotechnology CMOL. The first part concludes with hybrid CMOS-Nano architectures.

The second, memory part covers state-of-the-art SRAM, DRAM, and flash memories as well as emerging device concepts. Semiconductor memory is a good example of the full custom design that applies various analog and logic circuits to utilize the memory cell’s device physics. Critical physical effects that include tunneling, hot electron injection, charge trapping (Flash memory) are discussed in detail. Emerging memories like FRAM, PRAM and ReRAM that depend on magnetization, electron spin alignment, ferroelectric effect, built-in potential well, quantum effects, and thermal melting are also described.

CMOS Processors and Memories is a must for anyone serious about circuit design for future computing technologies. The book is written by top notch international experts in industry and academia. It can be used in graduate course curriculum.