## Similar

While there are many other works on introductory topology, this volume employs a methodology somewhat different from other texts. Metric space and point-set topology material is treated in the first two chapters; algebraic topological material in the remaining two. The authors lead readers through a number of nontrivial applications of metric space topology to analysis, clearly establishing the relevance of topology to analysis. Second, the treatment of topics from elementary algebraic topology concentrates on results with concrete geometric meaning and presents relatively little algebraic formalism; at the same time, this treatment provides proof of some highly nontrivial results. By presenting homotopy theory without considering homology theory, important applications become immediately evident without the necessity of a large formal program.

Prerequisites are familiarity with real numbers and some basic set theory. Carefully chosen exercises are integrated into the text (the authors have provided solutions to selected exercises for the Dover edition), while a list of notations and bibliographical references appear at the end of the book.

The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression.

In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest.

The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Everything you need to pass the exam and get the college credit you deserve.

CLEP* is the most popular credit-by-examination program in the country, accepted by more than 2,900 colleges and universities. For over 15 years, REA has helped students pass the CLEP* exam and earn college credit while reducing their tuition costs.

Our CLEP* test preps are perfect for adults returning to college (or attending for the first time), military service members, high-school graduates looking to earn college credit, or home-schooled students with knowledge that can translate into college credit.

There are many different ways to prepare for the CLEP*. What's best for you depends on how much time you have to study and how comfortable you are with the subject matter. Our test prep for CLEP* College Algebra and the free online tools that come with it, will allow you to create a personalized CLEP* study plan that can be customized to fit you: your schedule, your learning style, and your current level of knowledge.

Here's how it works:

Diagnostic exam at the REA Study Center focuses your study

Our online diagnostic exam pinpoints your strengths and shows you exactly where you need to focus your study. Armed with this information, you can personalize your prep and review where you need it the most.

Most complete subject review for CLEP* College Algebra

Our targeted review covers all the material you'll be expected to know for the exam and includes a glossary of must-know terms.

Two full-length practice exams

The online REA Study Center gives you two full-length practice tests and the most powerful scoring analysis and diagnostic tools available today. Instant score reports help you zero in on the CLEP* College Algebra topics that give you trouble now and show you how to arrive at the correct answer-so you'll be prepared on test day.

The book begins with a short review of calculus and ordinary differential equations, then moves on to explore integral curves and surfaces of vector fields, quasi-linear and linear equations of first order, series solutions and the Cauchy Kovalevsky theorem. It then delves into linear partial differential equations, examines the Laplace, wave and heat equations, and concludes with a brief treatment of hyperbolic systems of equations.

Among the most important features of the text are the challenging problems at the end of each section which require a wide variety of responses from students, from providing details of the derivation of an item presented to solving specific problems associated with partial differential equations. Requiring only a modest mathematical background, the text will be indispensable to those who need to use partial differential equations in solving physical problems. It will provide as well the mathematical fundamentals for those who intend to pursue the study of more advanced topics, including modern theory.

Most of the material focuses on point-set topology with the exception of the last chapter. Topics include sets and functions, infinite sets and transfinite numbers, topological spaces and basic concepts, product spaces, connectivity, and compactness. Additional subjects include separation axioms, complete spaces, and homotopy and the fundamental group. Numerous hints and figures illuminate the text.

Those familiar with mathematics texts will note the fine illustrations throughout and large number of problems offered at the chapter ends. An answer section is provided. Students weary of plodding mathematical prose will find Professor Flanigan's style as refreshing and stimulating as his approach.

From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map.

Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast.

Though the Japanese abacus may appear mysterious or even primitive, this intriguing tool is capable of amazing speed and accuracy. it is still widely used throughout the shop and markets of Asia and its popularity shows no sign of decline.

This volume is designed for the student desiring a greater understanding of the abacus and its calculative functions. The text provides thorough explanations of the advanced operations involving negative numbers, decimals, different units of measurement, and square roots. Diagrams illustrate bead manipulation, and numerous exercises provide ample practice.

Concise and easy-to-follow, this book will improve your abacus skills and help you perform calculations with greater efficiency and precision.

A few selected topics allow students to acquire a feeling for the types of results and the methods of proof in mathematics, including mathematical induction. Subsequent problems deal with networks and maps, provide practice in recognizing topological equivalence of figures, examine a proof of the Jordan curve theorem for the special case of a polygon, and introduce set theory. The concluding chapters examine transformations, connectedness, compactness, and completeness. The text is well illustrated with figures and diagrams.

Containing a careful selection of standard and timely topics, the Pocket Book of Integrals and Mathematical Formulas, Fourth Edition presents many numerical and statistical tables, scores of worked examples, and the most useful mathematical formulas for engineering and scientific applications. This fourth edition of a bestseller provides even more comprehensive coverage with the inclusion of several additional topics, all while maintaining its accessible, clear style and handy size.

New to the Fourth Edition

• An expanded chapter on series that covers many fascinating properties of the natural numbers that follow from number theory

• New applications such as geostationary satellite orbits and drug kinetics

• An expanded statistics section that discusses nonlinear regression as well as the normal approximation of the binomial distribution

• Revised format of the table of integrals for easier use of the forms and functions

Easy to Use on the Go

The book addresses a range of areas, from elementary algebra, geometry, matrices, and trigonometry to calculus, vector analysis, differential equations, and statistics. Featuring a convenient, portable size, it is sure to remain in the pockets or on the desks of all who use mathematical formulas and tables of integrals and derivatives.

Since many abstractions and generalizations originate with the real line, the author has made it the unifying theme of the text, constructing the real number system from the point of view of a Cauchy sequence (a step which Dr. Sprecher feels is essential to learn what the real number system is).

The material covered in Elements of Real Analysis should be accessible to those who have completed a course in calculus. To help give students a sound footing, Part One of the text reviews the fundamental concepts of sets and functions and the rational numbers. Part Two explores the real line in terms of the real number system, sequences and series of number and the structure of point sets. Part Three examines the functions of a real variable in terms of continuity, differentiability, spaces of continuous functions, measure and integration, and the Fourier series.

An especially valuable feature of the book is the exercises which follow each section. There are over five hundred, ranging from the simple to the highly difficult, each focusing on a concept previously introduced.

The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal two?] or three?] semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.

Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent study will particularly appreciate the worked examples that appear throughout the text.

Alpha Teach Yourself Algebra I in 24 Hours provides readers with a structured, self-paced, straight-forward tutorial on algebra. It's the perfect textbook companion for students struggling with algebra, a solid primer for those looking to get a head start on an upcoming class, and a welcome refresher for parents tasked with helping out with homework. The book provides 24 one-hour lessons, with each chapter designed to build on the previous one.

? Covers classifying number sets, expressions, polynomials, factoring, radicals, exponents and logarithms, and much more

? Each chapter ends with a quiz so readers can identify where they may need more help

Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure.

The book is arranged in four sections, devoted to realizing the universal principle force equals curvature:

Part I: The Euclidean Manifold as a Paradigm

Part II: Ariadne's Thread in Gauge Theory

Part III: Einstein's Theory of Special Relativity

Part IV: Ariadne's Thread in Cohomology

For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum.

Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

Ranging from the familiar to the obscure, the examples are preceded by a succinct exposition of general topology and basic terminology and theory. Each example is treated as a whole, with a highly geometric exposition that helps readers comprehend the material. Over 25 Venn diagrams and reference charts summarize the properties of the examples and allow students to scan quickly for examples with prescribed properties. In addition, discussions of general methods of constructing and changing examples acquaint readers with the art of constructing counterexamples. The authors have included an extensive collection of problems and exercises, all correlated with various examples, and a bibliography of 140 sources, tracing each uncommon example to its origin.

This revised and expanded second edition will be especially useful as a course supplement and reference work for students of general topology. Moreover, it gives the instructor the flexibility to design his own course while providing students with a wealth of historically and mathematically significant examples. 1978 edition.

The book's first five chapters give an exposition of the theory of infinity-categories that emphasizes their role as a generalization of ordinary categories. Many of the fundamental ideas from classical category theory are generalized to the infinity-categorical setting, such as limits and colimits, adjoint functors, ind-objects and pro-objects, locally accessible and presentable categories, Grothendieck fibrations, presheaves, and Yoneda's lemma. A sixth chapter presents an infinity-categorical version of the theory of Grothendieck topoi, introducing the notion of an infinity-topos, an infinity-category that resembles the infinity-category of topological spaces in the sense that it satisfies certain axioms that codify some of the basic principles of algebraic topology. A seventh and final chapter presents applications that illustrate connections between the theory of higher topoi and ideas from classical topology.

As fields like communications, speech and image processing, and related areas are rapidly developing, the FFT as one of the essential parts in digital signal processing has been widely used. Thus there is a pressing need from instructors and students for a book dealing with the latest FFT topics.

Fast Fourier Transform - Algorithms and Applications provides a thorough and detailed explanation of important or up-to-date FFTs. It also has adopted modern approaches like MATLAB examples and projects for better understanding of diverse FFTs.

Fast Fourier Transform - Algorithms and Applications is designed for senior undergraduate and graduate students, faculty, engineers, and scientists in the field, and self-learners to understand FFTs and directly apply them to their fields, efficiently. It is designed to be both a text and a reference. Thus examples, projects and problems all tied with MATLAB, are provided for grasping the concepts concretely. It also includes references to books and review papers and lists of applications, hardware/software, and useful websites. By including many figures, tables, bock diagrams and graphs, this book helps the reader understand the concepts of fast algorithms readily and intuitively. It provides new MATLAB functions and MATLAB source codes. The material in Fast Fourier Transform - Algorithms and Applications is presented without assuming any prior knowledge of FFT. This book is for any professional who wants to have a basic understanding of the latest developments in and applications of FFT. It provides a good reference for any engineer planning to work in this field, either in basic implementation or in research and development.

This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors’ intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs.

The Matlab and Maple software will be available for download from this website shortly.

www.pdecomp.net

Includes a spectrum of applications in science, engineering, applied mathematicsPresents a combination of numerical and analytical methodsProvides transportable computer codes in Matlab and MapleIngeniously relying on elementary algebra and just a smidgen of calculus, Professor Walker demonstrates how the underlying ideas behind wavelet analysis can be applied to solve significant problems in audio and image processing, as well in biology and medicine.

Nearly twice as long as the original, this new edition provides

· 104 worked examples and 222 exercises, constituting a veritable book of review material

· Two sections on biorthogonal wavelets

· A mini-course on image compression, including a tutorial on arithmetic compression

· Extensive material on image denoising, featuring a rarely covered technique for removing isolated, randomly positioned clutter

· Concise yet complete coverage of the fundamentals of time-frequency analysis, showcasing its application to audio denoising, and musical theory and synthesis

· An introduction to the multiresolution principle, a new mathematical concept in musical theory

· Expanded suggestions for research projects

· An enhanced list of references

· FAWAV: software designed by the author, which allows readers to duplicate described applications and experiment with other ideas.

To keep the book current, Professor Walker has created a supplementary website. This online repository includes ready-to-download software, and sound and image files, as well as access to many of the most important papers in the field.

"In the world of mathematics, the 1980's might well be described as the "decade of the fractal". Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology...the book also contains many good illustrations of fractals (including 16 color plates)."

Mathematics Teaching

"The book can be recommended to students who seriously want to know about the mathematical foundation of fractals, and to lecturers who want to illustrate a standard course in metric topology by interesting examples."

Christoph Bandt, Mathematical Reviews

"...not only intended to fit mathematics students who wish to learn fractal geometry from its beginning but also students in computer science who are interested in the subject. Especially, for the last students the author gives the required topics from metric topology and measure theory on an elementary level. The book is written in a very clear style and contains a lot of exercises which should be worked out."

H.Haase, Zentralblatt

About the second edition: Changes throughout the text, taking into account developments in the subject matter since 1990; Major changes in chapter 6. Since 1990 it has become clear that there are two notions of dimension that play complementary roles, so the emphasis on Hausdorff dimension will be replaced by the two: Hausdorff dimension and packing dimension. 6.1 will remain, but a new section on packing dimension will follow it, then the old sections 6.2--6.4 will be re-written to show both types of dimension; Substantial change in chapter 7: new examples along with recent developments; Sections rewritten to be made clearer and more focused.

The first part explores Markov processes and Brownian motion; the stochastic integral and stochastic differential equations; elliptic and parabolic partial differential equations and their relations to stochastic differential equations; the Cameron-Martin-Girsanov theorem; and asymptotic estimates for solutions. The section concludes with a look at recurrent and transient solutions.

Volume 2 begins with an overview of auxiliary results in partial differential equations, followed by chapters on nonattainability, stability and spiraling of solutions; the Dirichlet problem for degenerate elliptic equations; small random perturbations of dynamical systems; and fundamental solutions of degenerate parabolic equations. Final chapters examine stopping time problems and stochastic games and stochastic differential games. Problems appear at the end of each chapter, and a familiarity with elementary probability is the sole prerequisite.

The book is divided into three parts. The first introduces the framework for the above-mentioned classification, methodically developing a geometric and topological formulation applicable to all physical laws and properties; the second applies this formulation to a detailed study of particle dynamics, electromagnetism, deformable solids, fluid dynamics, heat conduction, and gravitation. The third part further analyses the general structure of the classification diagram for variables and equations of physical theories.

Suitable for a diverse audience of physicists, engineers, and mathematicians, The Mathematical Structure of Classical and Relativistic Physics offers a valuable resource for studying the physical world. Written at a level accessible to graduate and advanced undergraduate students in mathematical physics, the book can be used as a research monograph across various areas of physics, engineering and mathematics, and as a supplemental text for a broad range of upper-level scientific coursework.

Written by two pioneers of the concept of math anxiety and how to overcome it, Arithmetic and Algebra Again has helped tens of thousands of people conquer their irrational fear of math.

This revised and expanded second edition of the perennial bestseller:

Features the latest techniques for breaking through common anxieties about numbers Takes a real-world approach that lets mathphobes learn the math they need as they need it Covers all key math areas--from whole numbers and fractions to basic algebra Features a section on practical math for banking, mortgages, interest, and statistics and probability Includes a new section on the graphing calculator, a chapter on the metric system, a section on word problems, and all updated exercisesIn order to work with varying levels of engineering and physics research, it is important to have a firm understanding of key mathematical concepts such as advanced calculus, differential equations, complex analysis, and introductory mathematical physics. Essentials of Mathematical Methods in Science and Engineering provides a comprehensive introduction to these methods under one cover, outlining basic mathematical skills while also encouraging students and practitioners to develop new, interdisciplinary approaches to their research.

The book begins with core topics from various branches of mathematics such as limits, integrals, and inverse functions. Subsequent chapters delve into the analytical tools that are commonly used in scientific and engineering studies, including vector analysis, generalized coordinates, determinants and matrices, linear algebra, complex numbers, complex analysis, and Fourier series. The author provides an extensive chapter on probability theory with applications to statistical mechanics and thermodynamics that complements the following chapter on information theory, which contains coverage of Shannon's theory, decision theory, game theory, and quantum information theory. A comprehensive list of references facilitates further exploration of these topics.

Throughout the book, numerous examples and exercises reinforce the presented concepts and techniques. In addition, the book is in a modular format, so each chapter covers its subject thoroughly and can be read independently. This structure affords flexibility for individualizing courses and teaching.

Providing a solid foundation and overview of the various mathematical methods and applications in multidisciplinary research, Essentials of Mathematical Methods in Science and Engineering is an excellent text for courses in physics, science, mathematics, and engineering at the upper-undergraduate and graduate levels. It also serves as a useful reference for scientists and engineers who would like a practical review of mathematical methods.

* Assumes prior knowledge of Naive set theory, linear algebra, point set topology, basic complex variable, and real variables.

* Includes an appendix on the Riesz representation theorem.

Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible, combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger’s equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems.

The Third Edition is organized around four themes: methods of solution for initial-boundary value problems; applications of partial differential equations; existence and properties of solutions; and the use of software to experiment with graphics and carry out computations. With a primary focus on wave and diffusion processes, Beginning Partial Differential Equations, Third Edition also includes:

Proofs of theorems incorporated within the topical presentation, such as the existence of a solution for the Dirichlet problem The incorporation of Maple™ to perform computations and experiments Unusual applications, such as Poe’s pendulum Advanced topical coverage of special functions, such as Bessel, Legendre polynomials, and spherical harmonics Fourier and Laplace transform techniques to solve important problemsBeginning of Partial Differential Equations, Third Edition is an ideal textbook for upper-undergraduate and first-year graduate-level courses in analysis and applied mathematics, science, and engineering.

This book is suitable for researchers and graduate students working in complex approximation and its applications, mathematical analysis and numerical analysis.

No previous knowledge of topology is necessary for this text, which offers introductory material regarding open and closed sets and continuous maps in the first chapter. Succeeding chapters discuss the notions of differentiable manifolds and maps and explore one of the central topics of differential topology, the theory of critical points of functions on a differentiable manifold. Additional topics include an investigation of level manifolds corresponding to a given function and the concept of spherical modifications. The text concludes with applications of previously discussed material to the classification problem of surfaces and guidance, along with suggestions for further reading and study.

The contributors are Marco Abate, Marco Arizzi, Alexander Blokh, Thierry Bousch, Xavier Buff, Serge Cantat, Tao Chen, Robert Devaney, Alexandre Dezotti, Tien-Cuong Dinh, Romain Dujardin, Hugo García-Compeán, William Goldman, Rotislav Grigorchuk, John Hubbard, Yunping Jiang, Linda Keen, Jan Kiwi, Genadi Levin, Daniel Meyer, John Milnor, Carlos Moreira, Vincente Muñoz, Viet-Anh Nguyên, Lex Oversteegen, Ricardo Pérez-Marco, Ross Ptacek, Jasmin Raissy, Pascale Roesch, Roberto Santos-Silva, Dierk Schleicher, Nessim Sibony, Daniel Smania, Tan Lei, William Thurston, Vladlen Timorin, Sebastian van Strien, and Alberto Verjovsky.

The contributors are Jean Bourgain, Luis Caffarelli, Michael Christ, Guy David, Charles Fefferman, Alexandru D. Ionescu, David Jerison, Carlos Kenig, Sergiu Klainerman, Loredana Lanzani, Sanghyuk Lee, Lionel Levine, Akos Magyar, Detlef Müller, Camil Muscalu, Alexander Nagel, D. H. Phong, Malabika Pramanik, Andrew S. Raich, Fulvio Ricci, Keith M. Rogers, Andreas Seeger, Scott Sheffield, Luis Silvestre, Christopher D. Sogge, Jacob Sturm, Terence Tao, Christoph Thiele, Stephen Wainger, and Steven Zelditch.