## Similar Ebooks

Comprised of only two sections, this book first covers topics relevant to gamma-ray spectroscopy, such as the excitation and reorientation of coulombs; magnetic moments of excited fields; gamma rays from capture reactions; spectroscopy from fission; angular correlation methods; and lifetime measurements. The second section covers other topics that are relevant to nuclear spectroscopy, such as photonuclear reactions; nuclear spectroscopy from delayed particle emission; in-beam atomic spectroscopy; effects of extranuclear fields on nuclear radiations; and a guide to nuclear compilations.

This book is written to primarily benefit graduate students who are engaged in research that concerns nuclear spectroscopy.

Today physicists and mathematicians throughout the world are feverishly working on one of the most ambitious theories ever proposed: superstring theory. String theory, as it is often called, is the key to the Unified Field Theory that eluded Einstein for more than thirty years. Finally, the century-old antagonism between the large and the small-General Relativity and Quantum Theory-is resolved. String theory proclaims that all of the wondrous happenings in the universe, from the frantic dancing of subatomic quarks to the majestic swirling of heavenly galaxies, are reflections of one grand physical principle and manifestations of one single entity: microscopically tiny vibrating loops of energy, a billionth of a billionth the size of an atom. In this brilliantly articulated and refreshingly clear book, Greene relates the scientific story and the human struggle behind twentieth-century physics' search for a theory of everything.

Through the masterful use of metaphor and analogy, The Elegant Universe makes some of the most sophisticated concepts ever contemplated viscerally accessible and thoroughly entertaining, bringing us closer than ever to understanding how the universe works.

The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance.

The text discusses nuclear moments and nuclear models, as well as simple conclusions from experimental data and graphical representations of nuclear models and moments. An explanation of symbols used in the manuscript is also presented.

The book is a dependable reference for readers interested in the study of nuclear moments.

Organized into three sections, this book first discusses charged particle spectroscopy, which includes resonance reaction, reactions involving light ions, heavy-ion-induced reaction, and specialized reaction. The next section reviews spectroscopy from meson-induced reactions, including muonic and hadronic atoms; radiative capture; and charge exchange, scattering, and direct reactions. The final section discusses neutron spectroscopy, which includes advances in measurement of neutron spectra, charge exchange reactions, and polarization phenomena.

This book is written to primarily benefit graduate students who are engaged in research that concerns nuclear spectroscopy.

The book is organized into four parts. Part I develops the general mathematical framework, covering units and orders of magnitude, classical electrodynamics, and the general formalism of the quantum theory of fields. Part II deals with free fields. It examines some problems concerning the physical interpretation of the theory and asks whether the quantization procedure adopted actually introduces quantum characteristics and, if so, how these are expressed by the formalism. It also investigates the expectation values of more complicated expressions. Part III examines the effects of a mechanism which produces the particles under consideration; i.e., an external source of the fields. Part IV deals with quantum fields in interaction. The focus is on the case of a quantized electromagnetic field, the source of which is a quantized Dirac field.

Radiation: What could go wrong? In short, plenty. From Marie Curie carrying around a vial of radium salt because she liked the pretty blue glow to the large-scale disasters at Chernobyl and Fukushima, dating back to the late nineteenth century, nuclear science has had a rich history of innovative exploration and discovery, coupled with mistakes, accidents, and downright disasters.

In this lively book, long-time advocate of continued nuclear research and nuclear energy James Mahaffey looks at each incident in turn and analyzes what happened and why, often discovering where scientists went wrong when analyzing past meltdowns. Every incident, while taking its toll, has led to new understanding of the mighty atom—and the fascinating frontier of science that still holds both incredible risk and great promise.

Chapters 1 to 3 discuss the elements of linear vector theory, while Chapters 4 to 6 deal more specifically with the rudiments of quantum mechanics itself. Chapters 7 to 16 discuss the abstract group theory, invariant subgroups, and the general theory of representations. These chapters are mathematical, although much of the material covered should be familiar from an elementary course in quantum theory. Chapters 17 to 23 are specifically concerned with atomic spectra, as is Chapter 25. The remaining chapters discuss topics such as the recoupling (Racah) coefficients, the time inversion operation, and the classical interpretations of the coefficients.

The text is recommended for physicists and mathematicians who are interested in the application of group theory to quantum mechanics. Those who are only interested in mathematics can choose to focus on the parts more devoted to that particular area of the subject.

This book provides in-depth analysis of several concepts of nuclear spectroscopy, such as models of heavy and light nuclei, approaches in resonance reactions, inelastic scattering, charge exchange, and one- and two-nucleon transfer reactions.

This series is written to primarily benefit graduate students who are engaged in research that concerns nuclear spectroscopy.

The manuscript first discusses partial differential equations, as well as the method of separation of variables, three-dimensional wave equation, diffusion or heat flow equation, and wave equation in plane and cylindrical polar coordinates. The text also ponders on Frobenius' and other methods of solution. Discussions focus on hypergeometric equation, Bessel's equation, confluent hypergeometric equation, and change of dependent and independent variables.

The publication takes a look at Bessel and Legendre functions and Laplace and other transforms, including orthogonal properties, applications from electromagnetism, spherical harmonics, and application to partial differential equations. The book also examines matrices, analytical methods in classical and wave mechanics, calculus of variations, and complex variable theory and conformal transformations.

The book is a dependable reference for mathematicians, engineers, and physicists both at undergraduate and postgraduate levels.

The book first offers information on the Stokes-Navier equations of hydrodynamics, as well as equations of motion, viscosity, formal introduction of volume viscosity, and linearized wave equation for a nonviscous fluid. The manuscript then ponders on energy exchange between internal and external degrees of freedom as relaxation phenomenon; effect of slow energy exchange on sound propagation; different ways of evaluating the dispersion curve; and exact calculation of absorption and dispersion.

The text examines the effects of chemical reactions, thermodynamic theory of relaxation, and mixtures. The book also evaluates the absorption of high intensity sound waves, ratio of relaxation absorption to classical absorption at maximum, and gas mixtures. Discussions also focus on translational relaxation in monatomic gases, linear triatomic molecules, and results for rotational relaxation.

The manuscript is a dependable source of data for readers interested in the absorption and dispersion of ultrasonic waves.

This unassuming man struggled with issues relevant today, such as the threat of nuclear annihilation and the relationship of science to politics. Fleeing Fascism and anti-Semitism, Fermi became a leading figure in America's most secret project: building the atomic bomb. The last physicist who mastered all branches of the discipline, Fermi was a rare mixture of theorist and experimentalist. His rich legacy encompasses key advances in fields as diverse as comic rays, nuclear technology, and early computers.

In their revealing book, The Pope of Physics, Gino Segré and Bettina Hoerlin bring this scientific visionary to life. An examination of the human dramas that touched Fermi’s life as well as a thrilling history of scientific innovation in the twentieth century, this is the comprehensive biography that Fermi deserves.

These problems have come again into the foreground, in connection with the propagation of radio signals and radar. Reflection in the Heaviside layers requires a real knowledge of all these different definitions. Group velocity also plays a very important role in wave mechanics and corresponds to the speed of a particle. The present book should be very useful to physicists and radio engineers and should give them a good basis for new discussions and applications.

This book discusses the interactions of charged particles with matter, gaseous ionization detectors, and particular mass attenuation coefficients. The magnetic gamma-ray spectrometers for photo or internal-conversion electrons, general characteristics of cross-section variation with energy, and measurement of fast neutron spectra are also elaborated. This text likewise covers the elastic scattering of photons by nuclei and measurement of widths of gamma-radiating levels.

This publication is recommended for graduate students preparing for experimental research in nuclear spectroscopy, students who have completed graduate-level courses in quantum mechanics and nuclear physics, and specialists who wish to acquire a broader understanding of nuclear spectroscopy.

In The Theory of Almost Everything, Robert Oerter shows how what were once thought to be separate forces of nature were combined into a single theory by some of the most brilliant minds of the twentieth century. Rich with accessible analogies and lucid prose, The Theory of Almost Everything celebrates a heretofore unsung achievement in human knowledge—and reveals the sublime structure that underlies the world as we know it.

The selection first offers information on relativistic wave equations and noncovariant quantum theory of radiation, including the Dirac equation, Klein-Gordon equation, semiclassical theory, quantum theory of the radiation field, and general electromagnetic fields. The text then takes a look at the covariant theory of radiation, as well as the relativistic quantum field theory, free electromagnetic field, electron and electromagnetic fields in interaction, and solution of the interacting field problem.

The publication examines meson theory and nuclear forces and nuclear structure. Discussions focus on properties of the noninteracting system; characteristics of the two-body interaction; variational calculation of first-order energy; relativistic calculations in meson physics; and meson nucleon interactions. Hidden variables in the quantum theory and nuclear structure are also discussed.

The selection is a valuable source of data for readers interested in quantum theory.

In The Radioactive Boy Scout, veteran journalist Ken Silverstein recreates in brilliant detail the months of David’s improbable nuclear quest. Posing as a physics professor, David solicited information on reactor design from the U.S. government and from industry experts. (Ironically, the Nuclear Regulatory Commission was his number one source of information.) Scavenging antiques stores and junkyards for old-fashioned smoke detectors and gas lanterns—both of which contain small amounts of radioactive material—and following blueprints he found in an outdated physics textbook, David cobbled together a crude device that threw off toxic levels of radiation. His unsanctioned and wholly unsupervised project finally sparked an environmental catastrophe that put his town’s forty thousand residents at risk and caused the EPA to shut down his lab and bury it at a radioactive dumpsite in Utah.

An outrageous account of ambition and, ultimately, hubris that sits comfortably on the shelf next to such offbeat science books as Driving Mr. Albert and stories of grand capers like Catch Me If You Can, The Radioactive Boy Scout is a real-life adventure with the narrative energy of a first-rate thriller.

From the Hardcover edition.

The main emphasis is on the theories of atomic nuclei, the electron gas, and liquid helium; there is no discussion of molecular theory or of solid helium. The reader is expected to be familiar with the principles of nonrelativistic quantum mechanics and of statistical mechanics, but a knowledge of field theory and a detailed knowledge of nuclear and solid state physics are not assumed.

The book covers topics such as quantum mechanics; brats, kets, vectors, and linear operations; angular momentum; scattering and reaction theory; the polarization and angularization of spin-0-spin-1/2 scattering; and symettery, isotopic spin, and hypercharge. The book also discusses particles such as bosons, baryons, mesons, kaons, and hadrons, as well as the interactions between them.

The text is recommended for physicists, especially those who are practitioners and researchers in the fields of quantum physics and elementary-particle physics.

The book initially discusses the general theory of magnetic dipole and electric quadrupole radiation and the calculations and observations on individual atoms, as well as the forbidden transitions. The text then explores general topics on forbidden and allowed lines and bands; photoionization; photodetachment; recombination and attachment; elastic and inelastic scattering of electron; and energy loss by slow electrons. Discussions on collision broadening of spectral features and encounters between atomic systems including range, energy loss, excitation, ionization, detachment, charge transfer, elastic scattering, mobility, diffusion, relaxation in gases, and chemical reactions are provided in other chapters. A chapter is devoted to the use of high-temperature shock waves, and accounts of other main experimental methods are given.

This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented.

Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

This book is comprised of four chapters and begins with an overview of the method of second quantization and the relevant notations. The first chapter focuses on the connections between vectors and functionals and between operators and functionals, together with fundamental rules for operating on functionals. The reader is then introduced to the so-called quadratic operators and the linear canonical transformations closely connected with them. Quadratic operators reduced and not reduced to normal form are considered. The final chapter discusses the Thirring model, the simplest relativistically invariant model in quantum field theory, and explains why it includes infinities.

This monograph will be of value to students and practitioners of mathematical physics.

The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessarily in the order of decreasing mathematical tractability. The topics and methods selected were those which contributed most significantly to the understanding of the physics and the calculation of reliable cross sections. The attempt has been made to treat each of the sections in a complete and self-contained manner. The limited scope of this book has unfortunately made it necessary to omit discussion of many promising methods.

The monograph covers the properties of the radial distribution function and the three-particle distribution particle; the classical sound field and the correspondence principle; paired phonon states in the free- phonon approximation; the uniform limit and the charged boson system; and the microscopic theory of a single 3He atom in the 4He liquid.

Theoretical and experimental physicists will find the book very interesting.

Comprised of 16 chapters, this book opens with an overview of the special theory of relativity and some of its consequences. The following chapters deal with classical relativistic electrodynamics, touching on topics such as tensor analysis and Riemannian spaces; radiation from charged particles; radiation scattering from electrons; and the classical theory of charged particles. The second part of the book is entirely quantum mechanical in outlook, beginning with the quantization of the Hamiltonian formulation of classical electrodynamics. The many-body formalism leading to Fock-space techniques is also considered, along with self-energies and renormalization. The final chapter is devoted to the covariant formulation of QED as well as the validity of QED.

This monograph is written primarily for graduate students in elementary classical and quantum mechanics, electricity and magnetism, and modern physics courses.

A PEN/E. O. Wilson Literary Science Writing Award Finalist

Like many young children, Taylor Wilson dreamed of becoming an astronaut. Only Wilson mastered the science of rocket propulsion by the age of nine. When he was eleven, he tried to cure his grandmother’s cancer—and discovered new ways to produce medical isotopes. Then, at fourteen, Wilson became the youngest person in history to achieve nuclear fusion, building a 500-million-degree reactor—in his parents’ garage.

In The Boy Who Played with Fusion, science journalist Tom Clynes narrates Wilson’s extraordinary story. Born in Texarkana, Arkansas, Wilson quickly displayed an advanced intellect. Recognizing their son’s abilities and the limitations of their local schools, his parents took a bold leap and moved the family to Reno, Nevada. There, Wilson could attend a unique public high school created specifically for academic superstars. Wilson is now designing devices to prevent terrorists from shipping radioactive material and inspiring a new generation to take on the challenges of science.

If you’re wondering how someone so young can achieve so much, The Boy Who Played with Fusion has the answer. Along the way, Clynes’ narrative teaches parents, teachers, and society how and why we urgently need to support high-achieving kids.

“An essential contribution to our understanding of the most important underlying questions about the development of giftedness, talent, creativity, and intelligence.” —Psychology Today

“A compelling study of the thrills—and burdens—of being born with an alpha intellect.” —Financial Times

This book deals first with the concept of vector, matrix, and tensor analysis. These topics are followed by discussions on several theories of series relevant to physics; the fundamentals of complex variables and analytic functions; variational calculus for presenting the basic laws of many branches of physics; and the applications of group representations. The final chapters explore some partial and integral equations and derivatives of physics, as well as the concept and application of probability theory.

Physics teachers and students will greatly appreciate this book.

After briefly discussing the history of electron scattering from nuclei, this book goes on describing the theory of elastic scattering from a point nucleus, both with Born approximation and the accurate solution of the Dirac equation, as well as the corresponding experiments. The following chapter considers the analysis of nuclear charge distributions experiments using Born cross section and phase-shift methods. A chapter is devoted to the complete elastic and inelastic Born theory. This chapter also deals with the derivation of a theorem on the general form of the electron-nucleus scattering cross section, with an emphasis on the influence of the neglected transverse interaction on the cross section. The last chapter presents the status of elastic scattering along with some topics in muonic atoms that also determine nuclear charge densities.

This book will be of great benefit to physicists, researchers, and graduate students who are interested in nuclear structure problems.

Organized into 16 chapters, this volume begins with an overview of the underlying general mathematical facts, which constitute the substance of geometrical optics. It then presents the various techniques used to solve the ray and wavefront problems in general inhomogeneous medium. Other chapters consider the concept of ray tracing as a tool for calculating the principal curvatures of a wavefront as it propagates through a lens. In addition, the book tackles several topics, including the aspects of lens design, as well as a system of equations that are similar to the Maxwell equations. The last chapter deals with orthotomic systems of rays.

Optical designers, optical physicists, theoretical physicists, and mathematicians will find the information and methods in this book extremely useful.

The book opens by setting nuclear physics in the context of elementary particle physics and then shows how simple models can provide an understanding of the properties of nuclei, both in their ground states and excited states, and also of the nature of nuclear reactions. It then describes: nuclear constituents and their characteristics; nuclear interactions; nuclear structure, including the liquid-drop model approach, and the nuclear shell model; and recent developments such as the nuclear mean-field and the nuclear physics of very light nuclei, nuclear reactions with unstable nuclear beams, and the role of nuclear physics in energy production and nucleosynthesis in stars.

Throughout, discussions of theory are reinforced with examples that provide applications, thus aiding students in their reading and analysis of current literature. Each chapter closes with problems, and appendixes address supporting technical topics.

Mahaffey unearths lost reactors on far flung Pacific islands and trees that were exposed to active fission that changed gender or bloomed in the dead of winter. He explains why we have nuclear submarines but not nuclear aircraft and why cold fusion doesn't exist. And who knew that radiation counting was once a fashionable trend? Though parts of the nuclear history might seem like a fiction mash-up, where cowboys somehow got a hold of a reactor, Mahaffey's vivid prose holds the reader in thrall of the infectious energy of scientific curiosity and ingenuity that may one day hold the key to solving our energy crisis or sending us to Mars.

Welcome to Atom Land, the impossibly small world of quantum physics. With award–winning physics Jon Butterworth as your guide, you’ll set sail from Port Electron in search of strange new terrain. Each discovery will expand the horizons of your trusty map—from the Hadron Island to the Isle of Quarks and beyond. Just beware of Dark Energy and other sea monsters!

A masterful work of metaphor, Atom Land also gives form to the forces that shape the universe: Electromagnetism is a highway system; the strong force, a railway; the weak force, an airline. But, like Butterworth, you may find that curiosity is the strongest force of all—one that pulls you across the subatomic seas, toward the unknown realm of Antimatter, and to the very outer reaches of the cosmos.

It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived.

As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

Podcast — Building the H Bomb: A Personal History

Hosted by Milt Rosenberg (1590 WCGO), 25 June 2015

Building the H-Bomb: The Big Idea

APS News, June 2015 (Volume 24, Number 6)

Behind the Making of a Super Bomb

The Washington Post, 22 May 2015

Hydrogen Bomb Physicist's Book Runs Afoul of Energy Department

The New York Times, 23 March 2015

More

In this engaging scientific memoir, Kenneth Ford recounts the time when, in his mid-twenties, he was a member of the team that designed and built the first hydrogen bomb. He worked with — and relaxed with — scientific giants of that time such as Edward Teller, Enrico Fermi, Stan Ulam, John von Neumann, and John Wheeler, and here offers illuminating insights into the personalities, the strengths, and the quirks of these men. Well known for his ability to explain physics to nonspecialists, Ford also brings to life the physics of fission and fusion and provides a brief history of nuclear science from the discovery of radioactivity in 1896 to the ten-megaton explosion of “Mike” that obliterated a Pacific Island in 1952.

Ford worked at both Los Alamos and Princeton's Project Matterhorn, and brings out Matterhorn's major, but previously unheralded contribution to the development of the H bomb. Outside the lab, he drove a battered Chevrolet around New Mexico, a bantam motorcycle across the country, and a British roadster around New Jersey. Part of the charm of Ford's book is the way in which he leavens his well-researched descriptions of the scientific work with brief tales of his life away from weapons.

Contents:The Big IdeaThe ProtagonistsThe ChoiceThe Scientists, the Officials, and the PresidentNuclear EnergySome PhysicsGoing WestA New WorldThe Classical SuperCalculating and TestingConstructing MatterhornAcademia CowersNew Mexico, New York, and New JerseyThe Garwin DesignClimbing MatterhornMore Than a BoyReadership: A memoir for general readership in the history of science.

Key Features:It contains real physics, clearly presented for non-specialistsCombining historical scholarship and his own recollections, the author offers important insights into the people and the work that led to the first H bombPersonal anecdotes enliven the bookKeywords:Nuclear Weapons;Atomic Weapons;H Bomb;Thermonuclear Weapons;Nuclear Physics;Nuclear History;Thermonuclear History;Los Alamos;Edward Teller;Stanislav Ulam;John Wheeler;Project MatterhornReviews:

“It was a great treat to read a book that's well-written, informative, and gets the science right. It is these personal recollections and descriptions; the fact that it is a personal and first-hand account of a unique time in history and a remarkable scientific and technical achievement that made this book so enthralling. This is an engaging account of a young scientist involved in a remarkable project.”

P Andrew KaramThe Ohio State University

“Ford's book is a valuable resource for anyone interested in the history of the H bomb and its role in the Cold War, and in how that work affected the life and career of an individual involved.”

Physics Today"Personal memories are the book's greatest strength. Ford doesn't glorify, or apologize for, his work on the H-bomb. He simply tells it as it was. As a result, this is an engagingly human glimpse into the world of physics in the US in the early 1950s."

Physics WorldBorn out of a symposium held to commemorate the hundredth anniversary of Fermi's birth, Fermi Remembered combines essays and newly commissioned reminiscences with private material from Fermi's research notebooks, correspondence, speech outlines, and teaching to document the profound and enduring significance of Fermi's life and labors. The volume also features extensives archival material—including correspondence between Fermi and biophysicist Leo Szilard and a letter from Harry Truman—with new introductions that provide context for both the history of physics and the academic tradition at the University of Chicago.

Edited by James W. Cronin, a University of Chicago physicist and Nobel laureate himself, Fermi Remembered is a tender tribute to one of the greatest scientists of the twentieth century.

Contributors:

Harold Agnew

Nina Byers

Owen Chamberlain

Geoffrey F. Chew

James W. Cronin

George W. Farwell

Jerome I. Friedman

Richard L. Garwin

Murray Gell-Mann

Maurice Glicksman

Marvin L. Goldberger

Uri Haber-Schaim

Roger Hildebrand

Tsung Dao Lee

Darragh Nagle

Jay Orear

Marshall N. Rosenbluth

Arthur Rosenfeld

Robert Schluter

Jack Steinberger

Valentine Telegdi

Al Wattenberg

Frank Wilczek

Lincoln Wolfenstein

Courtenay Wright

Chen Ning Yang

Gaurang Yodh

* Includes chapters on practical examples and problems

* Contains hints to solving problems which are included in theappendix

* Avoids complex and extensive mathematical treatments

* A modern approach to nuclear physics, covering the basic theory,but emphasising the many and important applications

Mixing history, science, and biography, Ball’s gripping exploration of the lives of scientists under Nazism offers a powerful portrait of moral choice and personal responsibility, as scientists navigated “the grey zone between complicity and resistance.” Ball’s account of the different choices these three men and their colleagues made shows how there can be no clear-cut answers or judgement of their conduct. Yet, despite these ambiguities, Ball makes it undeniable that the German scientific establishment as a whole mounted no serious resistance to the Nazis, and in many ways acted as a willing instrument of the state.

Serving the Reich considers what this problematic history can tell us about the relationship of science and politics today. Ultimately, Ball argues, a determination to present science as an abstract inquiry into nature that is “above politics” can leave science and scientists dangerously compromised and vulnerable to political manipulation.

Pulsed power technologies could be an answer to many cutting-edge applications. The challenge is in how to develop this high-power/high-energy technology to fit current market demands of low-energy consuming applications. This book provides a comprehensive look at pulsed power technology and shows how it can be improved upon for the world of today and tomorrow.

Foundations of Pulsed Power Technology focuses on the design and construction of the building blocks as well as their optimum assembly for synergetic high performance of the overall pulsed power system. Filled with numerous design examples throughout, the book offers chapter coverage on various subjects such as: Marx generators and Marx-like circuits; pulse transformers; pulse-forming lines; closing switches; opening switches; multi-gigawatt to multi-terawatt systems; energy storage in capacitor banks; electrical breakdown in gases; electrical breakdown in solids, liquids and vacuum; pulsed voltage and current measurements; electromagnetic interference and noise suppression; and EM topology for interference control. In addition, the book:

Acts as a reference for practicing engineers as well as a teaching textFeatures relevant design equations derived from the fundamental concepts in a single referenceContains lucid presentations of the mechanisms of electrical breakdown in gaseous, liquid, solid and vacuum dielectricsProvides extensive illustrations and referencesFoundations of Pulsed Power Technology will be an invaluable companion for professionals working in the fields of relativistic electron beams, intense bursts of light and heavy ions, flash X-ray systems, pulsed high magnetic fields, ultra-wide band electromagnetics, nuclear electromagnetic pulse simulation, high density fusion plasma, and high energy- rate metal forming techniques.