## Similar

For centuries, scientific thought was focused on bringing order to the natural world. But even as relativity and quantum mechanics undermined that rigid certainty in the first half of the twentieth century, the scientific community clung to the idea that any system, no matter how complex, could be reduced to a simple pattern. In the 1960s, a small group of radical thinkers began to take that notion apart, placing new importance on the tiny experimental irregularities that scientists had long learned to ignore. Miniscule differences in data, they said, would eventually produce massive ones—and complex systems like the weather, economics, and human behavior suddenly became clearer and more beautiful than they had ever been before.In this seminal work of scientific writing, James Gleick lays out a cutting edge field of science with enough grace and precision that any reader will be able to grasp the science behind the beautiful complexity of the world around us. With more than a million copies sold, Chaos is “a groundbreaking book about what seems to be the future of physics” by a writer who has been a finalist for both the Pulitzer Prize and the National Book Award, the author of Time Travel: A History and Genius: The Life and Science of Richard Feynman (Publishers Weekly).

Thinking in Systems, is a concise and crucial book offering insight for problem solving on scales ranging from the personal to the global. Edited by the Sustainability Institute’s Diana Wright, this essential primer brings systems thinking out of the realm of computers and equations and into the tangible world, showing readers how to develop the systems-thinking skills that thought leaders across the globe consider critical for 21st-century life.

Some of the biggest problems facing the world—war, hunger, poverty, and environmental degradation—are essentially system failures. They cannot be solved by fixing one piece in isolation from the others, because even seemingly minor details have enormous power to undermine the best efforts of too-narrow thinking.

While readers will learn the conceptual tools and methods of systems thinking, the heart of the book is grander than methodology. Donella Meadows was known as much for nurturing positive outcomes as she was for delving into the science behind global dilemmas. She reminds readers to pay attention to what is important, not just what is quantifiable, to stay humble, and to stay a learner.

In a world growing ever more complicated, crowded, and interdependent, Thinking in Systems helps readers avoid confusion and helplessness, the first step toward finding proactive and effective solutions.

Taking on prominent thinkers who argue that music is nothing more than an evolutionary accident, Levitin poses that music is fundamental to our species, perhaps even more so than language. Drawing on the latest research and on musical examples ranging from Mozart to Duke Ellington to Van Halen, he reveals:

• How composers produce some of the most pleasurable effects of listening to music by exploiting the way our brains make sense of the world

• Why we are so emotionally attached to the music we listened to as teenagers, whether it was Fleetwood Mac, U2, or Dr. Dre

• That practice, rather than talent, is the driving force behind musical expertise

• How those insidious little jingles (called earworms) get stuck in our head

A Los Angeles Times Book Award finalist, This Is Your Brain on Music will attract readers of Oliver Sacks and David Byrne, as it is an unprecedented, eye-opening investigation into an obsession at the heart of human nature.

This book is an invaluable resource for burgeoning audio engineers. With clear writing and comprehensive illustrations, fundamental concepts of acoustics are explained in easy to understand language. The operating principles of the essential components of a sound system, as well as their use in the design and implementation of the system, are covered in detail. Operational aspects of executing a live performance are also given full treatment.

By providing practical information surrounding the concepts, implementations, and practices central to live sound reinforcement, this book sets the foundation upon which to build and move forward with confidence.

For centuries, scientific thought was focused on bringing order to the natural world. But even as relativity and quantum mechanics undermined that rigid certainty in the first half of the twentieth century, the scientific community clung to the idea that any system, no matter how complex, could be reduced to a simple pattern. In the 1960s, a small group of radical thinkers began to take that notion apart, placing new importance on the tiny experimental irregularities that scientists had long learned to ignore. Miniscule differences in data, they said, would eventually produce massive ones—and complex systems like the weather, economics, and human behavior suddenly became clearer and more beautiful than they had ever been before.In this seminal work of scientific writing, James Gleick lays out a cutting edge field of science with enough grace and precision that any reader will be able to grasp the science behind the beautiful complexity of the world around us. With more than a million copies sold, Chaos is “a groundbreaking book about what seems to be the future of physics” by a writer who has been a finalist for both the Pulitzer Prize and the National Book Award, the author of Time Travel: A History and Genius: The Life and Science of Richard Feynman (Publishers Weekly).

This is the first in a series of digital audio-engineering books written by Wick van den Belt, who used to be head-lecturer on various audio engineering courses.

From the author of How the Universe Got Its Spots and A Madman Dreams of Turing Machines, the epic story of the scientific campaign to record the soundtrack of our universe.

Black holes are dark. That is their essence. When black holes collide, they will do so unilluminated. Yet the black hole collision is an event more powerful than any since the origin of the universe. The profusion of energy will emanate as waves in the shape of spacetime: gravitational waves. No telescope will ever record the event; instead, the only evidence would be the sound of spacetime ringing. In 1916, Einstein predicted the existence of gravitational waves, his top priority after he proposed his theory of curved spacetime. One century later, we are recording the first sounds from space, the soundtrack to accompany astronomy’s silent movie.

In Black Hole Blues and Other Songs from Outer Space, Janna Levin recounts the fascinating story of the obsessions, the aspirations, and the trials of the scientists who embarked on an arduous, fifty-year endeavor to capture these elusive waves. An experimental ambition that began as an amusing thought experiment, a mad idea, became the object of fixation for the original architects—Rai Weiss, Kip Thorne, and Ron Drever. Striving to make the ambition a reality, the original three gradually accumulated an international team of hundreds. As this book was written, two massive instruments of remarkably delicate sensitivity were brought to advanced capability. As the book draws to a close, five decades after the experimental ambition began, the team races to intercept a wisp of a sound with two colossal machines, hoping to succeed in time for the centenary of Einstein’s most radical idea. Janna Levin’s absorbing account of the surprises, disappointments, achievements, and risks in this unfolding story offers a portrait of modern science that is unlike anything we’ve seen before.

From the Hardcover edition.

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.

In response to the apparent dissolution of boundaries at work in the contemporary technosciences of emergence, neocybernetics observes that cognitive systems are operationally bounded, semi-autonomous entities coupled with their environments and other systems. Second-order systems theory stresses the recursive complexities of observation, mediation, and communication. Focused on the neocybernetic contributions of von Foerster, Francisco Varela, and Niklas Luhmann, this collection advances theoretical debates about the cultural, philosophical, and literary uses of their ideas. In addition to the interview with von Foerster, Emergence and Embodiment includes essays by Varela and Luhmann. It engages with Humberto Maturana’s and Varela’s creation of the concept of autopoiesis, Varela’s later work on neurophenomenology, and Luhmann’s adaptations of autopoiesis to social systems theory. Taken together, these essays illuminate the shared commitments uniting the broader discourse of neocybernetics.

Contributors. Linda Brigham, Bruce Clarke, Mark B. N. Hansen, Edgar Landgraf, Ira Livingston, Niklas Luhmann, Hans-Georg Moeller, John Protevi, Michael Schiltz, Evan Thompson, Francisco J. Varela, Cary Wolfe

From epidemics of disease to outbreaks of market madness, from people searching for information to firms surviving crisis and change, from the structure of personal relationships to the technological and social choices of entire societies, Watts weaves together a network of discoveries across an array of disciplines to tell the story of an explosive new field of knowledge, the people who are building it, and his own peculiar path in forging this new science.

The book begins with a short review of calculus and ordinary differential equations, then moves on to explore integral curves and surfaces of vector fields, quasi-linear and linear equations of first order, series solutions and the Cauchy Kovalevsky theorem. It then delves into linear partial differential equations, examines the Laplace, wave and heat equations, and concludes with a brief treatment of hyperbolic systems of equations.

Among the most important features of the text are the challenging problems at the end of each section which require a wide variety of responses from students, from providing details of the derivation of an item presented to solving specific problems associated with partial differential equations. Requiring only a modest mathematical background, the text will be indispensable to those who need to use partial differential equations in solving physical problems. It will provide as well the mathematical fundamentals for those who intend to pursue the study of more advanced topics, including modern theory.

The fuel systems on board modern aircraft are multi-functional, fully integrated complex networks. They are designed to provide a proper and reliable management of fuel resources throughout all phases of operation, notwithstanding changes in altitude or speed, as well as to monitor system functionality and advise the flight crew of any operational anomalies that may develop.

Collates together a wealth of information on fuel system design that is currently disseminated throughout the literature. Authored by leading industry experts from Airbus and Parker Aerospace. Includes chapters on basic system functions, features and functions unique to military aircraft, fuel handling, fuel quantity gauging and management, fuel systems safety and fuel systems design and development. Accompanied by a companion website housing a MATLAB/SIMULINK model of a modern aircraft fuel system that allows the user to set up flight conditions, investigate the effects of equipment failures and virtually fly preset missions.Aircraft Fuel Systems provides a timely and invaluable resource for engineers, project and programme managers in the equipment supply and application communities, as well as for graduate and postgraduate students of mechanical and aerospace engineering. It constitutes an invaluable addition to the established Wiley Aerospace Series.

A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory.

In the twenty years since the first edition of this book appeared, the ideas and techniques of nonlinear dynamics and chaos have found application to such exciting new fields as systems biology, evolutionary game theory, and sociophysics. This second edition includes new exercises on these cutting-edge developments, on topics as varied as the curiosities of visual perception and the tumultuous love dynamics in Gone With the Wind.

The world, as Nick Bilton—with tongue-in-cheek—shows, has been going to hell for a long, long time, and what we are experiencing is the twenty-first-century version of the fear that always takes hold as new technology replaces the old. In fact, as Bilton shows, the digital era we are part of is, in all its creative and disruptive forms, the foundation for exciting and engaging experiences not only for business but society as well.

Both visionary and practical, I Live in the Future & Here’s How It Works captures the zeitgeist of an emerging age, providing the understanding of how a radically changed media world is influencing human behavior:

• With a walk on the wild side—through the porn industry—we see how this business model is leading the way, adapting product to consumer needs and preferences and beating piracy.

• By understanding how the Internet is creating a new type of consumer, the “consumnivore,” living in a world where immediacy trumps quality and quantity, we see who is dictating the type of content being created.

• Through exploring the way our brains are adapting, we gain a new understanding of the positive effect of new media narratives on thinking and action. One fascinating study, for example, shows that surgeons who play video games are more skillful than their nonplaying counterparts.

• Why social networks, the openness of the Internet, and handy new gadgets are not just vehicles for telling the world what you had for breakfast but are becoming the foundation for “anchoring communities” that tame information overload and help determine what news and information to trust and consume and what to ignore.

• Why the map of tomorrow is centered on “Me,” and why that simple fact means a totally new approach to the way media companies shape content.

• Why people pay for experiences, not content; and why great storytelling and extended relationships will prevail and enable businesses to engage with customers in new ways that go beyond merely selling information, instead creating unique and meaningful experiences.

I Live in the Future & Here’s How It Works walks its own talk by creating a unique reader experience: Semacodes embedded in both print and eBook versions will take readers directly to Bilton’s website (www.NickBilton.com), where they can access videos of the author further developing his point of view and also delve into the research that was key to shaping the central ideas of the book. The website will also offer links to related content and the ability to comment on a chapter, allowing the reader to join the conversation.

From the Hardcover edition.

Containing a careful selection of standard and timely topics, the Pocket Book of Integrals and Mathematical Formulas, Fourth Edition presents many numerical and statistical tables, scores of worked examples, and the most useful mathematical formulas for engineering and scientific applications. This fourth edition of a bestseller provides even more comprehensive coverage with the inclusion of several additional topics, all while maintaining its accessible, clear style and handy size.

New to the Fourth Edition

• An expanded chapter on series that covers many fascinating properties of the natural numbers that follow from number theory

• New applications such as geostationary satellite orbits and drug kinetics

• An expanded statistics section that discusses nonlinear regression as well as the normal approximation of the binomial distribution

• Revised format of the table of integrals for easier use of the forms and functions

Easy to Use on the Go

The book addresses a range of areas, from elementary algebra, geometry, matrices, and trigonometry to calculus, vector analysis, differential equations, and statistics. Featuring a convenient, portable size, it is sure to remain in the pockets or on the desks of all who use mathematical formulas and tables of integrals and derivatives.

Serving both as a text for students in engineering departments and as a reference for practicing engineers, this book focuses on electroacoustics, analyzing the behavior of transducers with the aid of electro-mechano-acoustical circuits. Assuming knowledge of electrical circuit theory, it starts by guiding readers through the basics of sound fields, the laws governing sound generation, radiation, and propagation, and general terminology. It then moves on to examine:

Microphones (electrostatic and electromagnetic), electrodynamic loudspeakers, earphones, and hornsLoudspeaker enclosures, baffles, and waveguidesMiniature applications (e.g., MEMS in I-Pods and cellphones)Sound in enclosures of all sizes, such as school rooms, offices, auditoriums, and living roomsNumerical examples and summary charts are given throughout the text to make the material easily applicable to practical design. It is a valuable resource for experimenters, acoustical consultants, and to those who anticipate being engineering designers of audio equipment.

An update for the digital age of Leo Beranek's classic 1954 book AcousticsProvides detailed acoustic fundamentals, enabling better understanding of complex design parameters, measurement methods, and dataExtensive appendices cover frequency-response shapes for loudspeakers, mathematical formulas, and conversion factorsDr. Olson discusses the nature of sound waves; explains the division of sound into scale patterns and the traditional method of notating them; describes the individual characteristics of all musical instruments currently in use (including the human voice); shows how the ears hear; discusses concert hall and recording studio acoustics, amplification systems, etc; describes the elements of sound reproduction systems from the telephone to the stereo record player; and concludes with a new chapter on the production, development, and potentialities of electronic music.

Under these broad headings, readers will find a close analysis of the way in which a violin produces sound; descriptions of carbon, crystal, dynamic, velocity, and unidirectional microphones; a comparison of the relative absorbency of 22 acoustic materials, building materials, and objects; a description of how music can be produced by a digital computer; and much, much more. Conductors will find suggestions on positioning their orchestras; performers will understand the dynamics of their instruments; recording engineers and acousticians will discover a remarkably comprehensive reference work; and music teachers, students, physicists, and enthusiasts in general will find easy access to a vast wealth of information.

In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal two?] or three?] semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.

For centuries, mariners have spun tales of gargantuan waves, 100-feet high or taller. Until recently scientists dismissed these stories—waves that high would seem to violate the laws of physics. But in the past few decades, as a startling number of ships vanished and new evidence has emerged, oceanographers realized something scary was brewing in the planet’s waters. They found their proof in February 2000, when a British research vessel was trapped in a vortex of impossibly mammoth waves in the North Sea—including several that approached 100 feet.

As scientists scramble to understand this phenomenon, others view the giant waves as the ultimate challenge. These are extreme surfers who fly around the world trying to ride the ocean’s most destructive monsters. The pioneer of extreme surfing is the legendary Laird Hamilton, who, with a group of friends in Hawaii, figured out how to board suicidally large waves of 70 and 80 feet. Casey follows this unique tribe of people as they seek to conquer the holy grail of their sport, a 100-foot wave.

In this mesmerizing account, the exploits of Hamilton and his fellow surfers are juxtaposed against scientists’ urgent efforts to understand the destructive powers of waves—from the tsunami that wiped out 250,000 people in the Pacific in 2004 to the 1,740-foot-wave that recently leveled part of the Alaskan coast.

Like Jon Krakauer’s Into Thin Air, The Wave brilliantly portrays human beings confronting nature at its most ferocious.

Can we scientifically predict our future? Scientists and pseudo scientists have been pursuing this mystery for hundreds and perhaps thousands of years. But now, astonishing new research is revealing patterns in human behavior previously thought to be purely random. Precise, orderly, predictable patterns...

Albert Laszlo Barabasi, already the world's preeminent researcher on the science of networks, describes his work on this profound mystery in Bursts, a stunningly original investigation into human nature. His approach relies on the digital reality of our world, from mobile phones to the Internet and email, because it has turned society into a huge research laboratory. All those electronic trails of time stamped texts, voicemails, and internet searches add up to a previously unavailable massive data set of statistics that track our movements, our decisions, our lives. Analysis of these trails is offering deep insights into the rhythm of how we do everything. His finding? We work and fight and play in short flourishes of activity followed by next to nothing. The pattern isn't random, it's "bursty." Randomness does not rule our lives in the way scientists have assumed up until now.

Illustrating this revolutionary science, Barabasi artfully weaves together the story of a 16th century burst of human activity-a bloody medieval crusade launched in his homeland, Transylvania-with the modern tale of a contemporary artist hunted by the FBI through our post 9/11 surveillance society. These narratives illustrate how predicting human behavior has long been the obsession, sometimes the duty, of those in power. Barabási's astonishingly wide range of examples from seemingly unrelated areas include how dollar bills move around the U.S., the pattern everyone follows in writing email, the spread of epidemics, and even the flight patterns of albatross. In all these phenomena a virtually identical, mathematically described bursty pattern emerges.

Bursts reveals what this amazing new research is showing us about where individual spontaneity ends and predictability in human behavior begins. The way you think about your own potential to do something truly extraordinary will never be the same.

Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent study will particularly appreciate the worked examples that appear throughout the text.

A unified account of the field rather than a description of parallel methods, the text's main thematic approaches include the self-consistent field and its generalizations, perturbation theory and the use of Feynman diagrams, and the use of Green functions to describe excitations of a many-body system. The primary emphasis is on the theories of atomic nuclei, the electron gas, superconductivity, and liquid helium three. A familiarity with the principles of nonrelativistic quantum mechanics and statistical mechanics is assumed, but a detailed knowledge of nuclear and solid state physics is unnecessary.

A NEW YORK TIMES NOTABLE BOOK

A VOICE LITERARY SUPPLEMENT TOP 25 FAVORITE BOOKS OF THE YEAR

AN ESQUIRE MAGAZINE BEST BOOK OF THE YEAR

Explaining why the whole is sometimes smarter than the sum of its parts, Johnson presents surprising examples of feedback, self-organization, and adaptive learning. How does a lively neighborhood evolve out of a disconnected group of shopkeepers, bartenders, and real estate developers? How does a media event take on a life of its own? How will new software programs create an intelligent World Wide Web?

In the coming years, the power of self-organization -- coupled with the connective technology of the Internet -- will usher in a revolution every bit as significant as the introduction of electricity. Provocative and engaging, Emergence puts you on the front lines of this exciting upheaval in science and thought.

Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure.

The book is arranged in four sections, devoted to realizing the universal principle force equals curvature:

Part I: The Euclidean Manifold as a Paradigm

Part II: Ariadne's Thread in Gauge Theory

Part III: Einstein's Theory of Special Relativity

Part IV: Ariadne's Thread in Cohomology

For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum.

Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

This is an ideal reference for professionals in the public and private power service sectors such as engineers, lawyers, systems specialists, economists, financial analysts, policy analysts, and applied mathematicians.

Fortunately for you, there's Schaum's.

More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

This Schaum's Outline gives you

1,370 fully solved problems Complete review of all course fundamentals Clear, concise explanations of all Advanced Calculus conceptsFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!

Topics include: Numbers; Sequences; Functions, Limits, and Continuity; Derivatives; Integrals; Partial Derivatives; Vectors; Applications of Partial Derivatives; Multiple Integrals; Line Integrals, Surface Integrals, and Integral Theorems; Infinite Series; Improper Integrals; Fourier Series; Fourier Integrals; Gamma and Beta Functions; and Functions of a Complex Variable

Schaum's Outlines--Problem Solved.

This great work supplied the momentum for the Scientific Revolution and dominated physics for over 200 years.

It was the ancient opinion of not a few, in the earliest ages of philosophy, that the fixed stars stood immoveable in the highest parts of the world; that, under the fixed stars the planets were carried about the sun; that the earth, us one of the planets, described an annual course about the sun, while by a diurnal motion it was in the mean time revolved about its own axis; and that the sun, as the common fire which served to warm the whole, was fixed in the centre of the universe.

This was the philosophy taught of old by Philolaus, Aristarchus of Samos, Plato in his riper years, and the whole sect of the Pythagoreans; and this was the judgment of Anaximander, more ancient than any of them; and of that wise king of the Romans, Numa Pompilius, who, as a symbol of the figure of the world with the sun in the centre, erected a temple in honour of Vesta, of a round form, and ordained perpetual fire to be kept in the middle of it.

This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors’ intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs.

The Matlab and Maple software will be available for download from this website shortly.

www.pdecomp.net

Includes a spectrum of applications in science, engineering, applied mathematicsPresents a combination of numerical and analytical methodsProvides transportable computer codes in Matlab and MapleThe Mechanical Engineering Reference Manual is the most comprehensive textbook for the Mechanical PE exam. This book's time-tested organization and clear explanations start with the basics to help you quickly get up to speed on common mechanical engineering concepts. Together, the 76 chapters provide an in-depth review of NCEES Mechanical PE exam topics. The extensive index contains thousands of terms, most indexed in a variety of ways, in anticipation of how you'll search for them.

Features of the Mechanical Engineering Reference Manual: • over 120 appendices containing essential support material • over 375 clarifying example problems • thousands of equations, figures, and tables • industry-standard terminology and nomenclature • equal support of U.S. customary and SI units

After you pass your exam, the Mechanical Engineering Reference Manual will continue to serve as an invaluable reference throughout your mechanical engineering career.

Topics Covered: • Dynamics and Vibrations: Kinematics; Kinetics; Power Transmission Systems; Vibrating Systems • Materials: Engineering Materials Properties and Testing; Thermal Treatment of Metals • Fluids: Fluid Properties; Fluid Statics; Fluid Flow Parameters; Fluid Dynamics; Hydraulic Machines • Power Cycles: Vapor, Combustion, and Nuclear Power Cycles; Refrigeration and Gas Compression Cycles • HVAC: Psychrometrics; Fans, Ductwork, and Ventilation; Heating and Cooling Loads; Air Conditioning Systems • Heat Transfer: Natural Convection; Evaporation; Condensation; Forced Convection; Radiation • Machine Design: Basic and Advanced Machine Design; Pressure Vessels • Thermodynamics: Inorganic Chemistry; Fuels and Combustion; Properties of Substances • Control Systems: Modeling and Analysis of Engineering Systems • Plant Engineering: Manufacturing Processes; Instrumentation and Measurements; Materials Handling and Processing; Fire Protection Systems; Environmental Pollutants and Remediation; Hazardous Material Storage and Disposal • Fundamentals: Math Review; Probability; Statics; Engineering Economic Analysis • Law and Ethics: Engineering Law; Ethics

What's New in This Edition: • 36 chapters with new material, and 46 chapters with revisions to existing material • 300 new equations, and 128 updated equations • 27 new tables, and 31 updated tables • 7 new examples, and 34 updated examples • 10 new appendices, and 27 updated appendices • 35 new figures, and 28 updated figures • 1,094 new index entries, and 108 updated index entries

Ingeniously relying on elementary algebra and just a smidgen of calculus, Professor Walker demonstrates how the underlying ideas behind wavelet analysis can be applied to solve significant problems in audio and image processing, as well in biology and medicine.

Nearly twice as long as the original, this new edition provides

· 104 worked examples and 222 exercises, constituting a veritable book of review material

· Two sections on biorthogonal wavelets

· A mini-course on image compression, including a tutorial on arithmetic compression

· Extensive material on image denoising, featuring a rarely covered technique for removing isolated, randomly positioned clutter

· Concise yet complete coverage of the fundamentals of time-frequency analysis, showcasing its application to audio denoising, and musical theory and synthesis

· An introduction to the multiresolution principle, a new mathematical concept in musical theory

· Expanded suggestions for research projects

· An enhanced list of references

· FAWAV: software designed by the author, which allows readers to duplicate described applications and experiment with other ideas.

To keep the book current, Professor Walker has created a supplementary website. This online repository includes ready-to-download software, and sound and image files, as well as access to many of the most important papers in the field.

In their conversations with the justices, Brian Lamb and Susan Swain bring readers into a fascinating world to which few have had access. Chief Justice John Roberts talks about the role of the Court in society, his role as chief justice, and the process of deciding cases. Justice Stephen Breyer takes us on a private tour of his chambers and describes the differences between the Court and the Congress. And new Justices Sonia Sotomayor and Elena Kagan reflect on their first impressions of the job. Through these encounters, the justices’ personalities, intellects, and devotion to the Court emerge.

Enriching this material are Mark Farkas’s interviews with journalists, court historians, and other experts on the Court. Reporters Joan Biskupic and Lyle Denniston discuss the Supreme Court in action and the impact of a new member of the Court. Clerk of the Supreme Court William Suter illuminates the traditions of the Court. Historian James O’Hara discusses the Supreme Court building and its history. Former Solicitor General Drew Days III and attorney Maureen Mahoney describe the experience of facing the justices in fast-paced oral arguments.

The Supreme Court offers readers a rare window into the nation’s highest court through the eyes of those who serve there. It is absorbing reading for anyone interested in this vital and powerful institution.

1001 Calculus Practice Problems For Dummies takes you beyond the instruction and guidance offered in Calculus For Dummies, giving you 1001 opportunities to practice solving problems from the major topics in your calculus course. Plus, an online component provides you with a collection of calculus problems presented in multiple-choice format to further help you test your skills as you go.

Gives you a chance to practice and reinforce the skills you learn in your calculus course Helps you refine your understanding of calculus Practice problems with answer explanations that detail every step of every problemThe practice problems in 1001 Calculus Practice Problems For Dummies range in areas of difficulty and style, providing you with the practice help you need to score high at exam time.

Addressing questions most ocean visitors have had and offering new ones for our consideration, The Science of Ocean Waves explains in accessible language how waves are formed, how they move, how they become huge and destructive, and how they're being studied now for clues that will help us plan for the future.

Devoting chapters to wind, tides, currents, breakers, tsunamis, forecasting, renewable energy, and El Niño—as well as discussing the gentler properties of ocean waves which inspire us and offer opportunities for relaxation and recreation—Zirker explores the physical factors that create waves.

Drawing on some of the recent storms that have devastated entire regions—such as Hurricane Katrina, the tsunami launched by the 2004 Sumatran earthquake, and the great tsunami that crushed the shore of Japan in 2011—Zirker explains the forces that cause these monster waves and reveals the toll they take on human lives.

Enhanced by dozens of illustrations and a comprehensive glossary, The Science of Ocean Waves will fascinate anyone curious about the science behind the headlines.

Praise for J. B. Zirker

"Scientists know their stuff but are rarely good storytellers, whereas good storytellers rarely possess the necessary sweeping command of a scientific discipline. Zirker is that rare animal who can both communicate the most demanding technical detail and make it accessible."— New Scientist

-- Chris Almond

Slay the calculus monster with this user-friendly guide

Calculus For Dummies, 2nd Edition makes calculus manageable—even if you're one of the many students who sweat at the thought of it. By breaking down differentiation and integration into digestible concepts, this guide helps you build a stronger foundation with a solid understanding of the big ideas at work. This user-friendly math book leads you step-by-step through each concept, operation, and solution, explaining the "how" and "why" in plain English instead of math-speak. Through relevant instruction and practical examples, you'll soon learn that real-life calculus isn't nearly the monster it's made out to be.

Calculus is a required course for many college majors, and for students without a strong math foundation, it can be a real barrier to graduation. Breaking that barrier down means recognizing calculus for what it is—simply a tool for studying the ways in which variables interact. It's the logical extension of the algebra, geometry, and trigonometry you've already taken, and Calculus For Dummies, 2nd Edition proves that if you can master those classes, you can tackle calculus and win.

Includes foundations in algebra, trigonometry, and pre-calculus concepts Explores sequences, series, and graphing common functions Instructs you how to approximate area with integration Features things to remember, things to forget, and things you can't get away withStop fearing calculus, and learn to embrace the challenge. With this comprehensive study guide, you'll gain the skills and confidence that make all the difference. Calculus For Dummies, 2nd Edition provides a roadmap for success, and the backup you need to get there.

The first part explores Markov processes and Brownian motion; the stochastic integral and stochastic differential equations; elliptic and parabolic partial differential equations and their relations to stochastic differential equations; the Cameron-Martin-Girsanov theorem; and asymptotic estimates for solutions. The section concludes with a look at recurrent and transient solutions.

Volume 2 begins with an overview of auxiliary results in partial differential equations, followed by chapters on nonattainability, stability and spiraling of solutions; the Dirichlet problem for degenerate elliptic equations; small random perturbations of dynamical systems; and fundamental solutions of degenerate parabolic equations. Final chapters examine stopping time problems and stochastic games and stochastic differential games. Problems appear at the end of each chapter, and a familiarity with elementary probability is the sole prerequisite.

Illustrating turbomachinery, vibration severity levels, condition monitoring, and rotor vibration cause identification, Rotating Machinery Vibration

Provides a primer on vibration fundamentals

Highlights calculation of rotor unbalance response and rotor self-excited vibration

Demonstrates calculation of rotor balancing weights

Furnishes PC codes for lateral rotor vibration analyses

Treats bearing, seal, impeller, and blade effects on rotor vibration

Describes modes, excitation, and stability of computer models

Includes extensive PC data coefficient files on bearing dynamics

Providing comprehensive descriptions of vibration symptoms for rotor unbalance, dynamic instability, rotor-stator rubs, misalignment, loose parts, cracked shafts, and rub-induced thermal bows, Rotating Machinery Vibration is an essential reference for mechanical, chemical, design, manufacturing, materials, aerospace, and reliability engineers; and specialists in vibration, rotating machinery, and turbomachinery; and an ideal text for upper-level undergraduate and graduate students in these disciplines.

The next few years will see a major revolution in the technology used to deliver television services as the world moves from analog to digital television. Presently, all existing textbooks dealing with analog television standards (NTSC and PAL) are becoming obsolete as the prevalence of digital technology continues to become more widespread. Now, Digital Television: Technology and Standards fills the need for a single, authoritative textbook that covers all aspects of digital television technology.

Divided into three main sections, Digital Television explores:

*

Video: MPEG-2, which is at the heart of all digital video broadcasting services

*

Audio: MPEG-2 Advanced Audio Coding and Dolby AC-3, which will be used internationally in digital video broadcasting systems

*

Systems: MPEG, modulation transmission, forward error correction, datacasting, conditional access, and digital storage media command and control

Complete with tables, illustrations, and figures, this valuable textbook includes problems and laboratories at the end of each chapter and also offers a number of exercises that allow students to implement the various techniques discussed using MATLAB. The authors' coverage of implementation and theory makes this a practical reference for professionals, as well as an indispensable textbook for advanced undergraduates and graduate-level students in electrical engineering and computer science programs.