## Similar

An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, spectral collocation, finite element ideas, and Clenshaw-Curtis quadrature, are presented from an introductory perspective, and theSecond Edition also features: Chapters and sections that begin with basic, elementary material followed by gradual coverage of more advanced material Exercises ranging from simple hand computations to challenging derivations and minor proofs to programming exercises Widespread exposure and utilization of MATLAB® An appendix that contains proofs of various theorems and other material

In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.

Some images inside the book are unavailable due to digital copyright restrictions.

The author can awaken for you a faculty which is surprisingly dormant in accountants, engineers, scientists, businesspeople, and others who work with figures. This is "number sense" — or the ability to recognize relations between numbers considered as whole quantities. Lack of this number sense makes it entirely possible for a scientist to be proficient in higher mathematics, but to bog down in the arithmetic of everyday life.

This book teaches the necessary mathematical techniques that schools neglect to teach: Horizontal addition, left to right multiplication and division, etc. You will learn a method of multiplication so rapid that you'll be able to do products in not much more time than it would take to write the problem down on paper.

This is not a collection of tricks that work in only a very few special cases, but a serious, capably planned course of basic mathematics for self-instruction. It contains over 9,000 short problems and their solutions for you to work during spare moments. Five or ten minutes spent daily on this book will, within ten weeks, give you a number sense that will double or triple your calculation speed.

Social Media is huge - Nothing in the history of the world has brought people together and changed the face of business like social media has.

Reach out to the world and get them to like you.

In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.

By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

Various professionals will find this book immensely useful, whether it be the industrial engineer, the industrial manager, or anyone associated with engineering in a technical or managing role. It will bring about a clear understanding of not only how to implement Six Sigma statistical tools, but also how to do so within the bounds of Lean manufacturing scheme. It will show how Lean Six Sigma can help reinforce the notion of “less is more, while at the same time preserving minimal error rates in final manufactured products.

Reviews the essential statistical tools upon which Six Sigma rests, including normal distribution and mean deviation and the derivation of 1 sigma through six sigmaExplains essential lean tools like Value-Stream Mapping and quality improvement tools like Kaizen techniques within the context of Lean Six Sigma practiceExtended case study to clearly demonstrate how Six Sigma and Lean principles have been actually implemented, reducing production times and costs and creating improved product qualityThough the Japanese abacus may appear mysterious or even primitive, this intriguing tool is capable of amazing speed and accuracy. it is still widely used throughout the shop and markets of Asia and its popularity shows no sign of decline.

This volume is designed for the student desiring a greater understanding of the abacus and its calculative functions. The text provides thorough explanations of the advanced operations involving negative numbers, decimals, different units of measurement, and square roots. Diagrams illustrate bead manipulation, and numerous exercises provide ample practice.

Concise and easy-to-follow, this book will improve your abacus skills and help you perform calculations with greater efficiency and precision.

It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples.

Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors.

The book covers key foundation topics:

o Taylor series methods

o Runge--Kutta methods

o Linear multistep methods

o Convergence

o Stability

and a range of modern themes:

o Adaptive stepsize selection

o Long term dynamics

o Modified equations

o Geometric integration

o Stochastic differential equations

The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

The extensively revised second edition provides further clarification of matters that typically give rise to difficulty in the classroom and restructures the chapters on logic to emphasize the role of consequence relations and higher-level rules, as well as including more exercises and solutions.

Topics and features: teaches finite mathematics as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear away confusions; provides numerous exercises, with selected solutions, to test and deepen the reader’s understanding.

This clearly-written text/reference is a must-read for first-year undergraduate students of computing. Assuming only minimal mathematical background, it is ideal for both the classroom and independent study.

Every number in this book is identified by its "field marks," "similar species," "personality," and "associations." For example, one field mark of the number 6 is that it is the first perfect number-- the sum of its divisors (1, 2, and 3) is equal to the number itself. Thus 28, the next perfect number, is a similar species. And the fact that 6 can easily be broken into 2 and 3 is part of its personality, a trait that is helpful when large numbers are being either multiplied or divided by 6. Associations with 6 include its relationship to the radius of a circle. In addition to such classifications, special attention is paid to dozens of other fascinating numbers, including zero, pi, 10 to the 76th power (the number of particles in the universe), transfinite and other exceptionally larger numbers, and the concept of infinity.

Ideal for beginners but organized to appeal to the mathematically literate, The Kingdom of Infinite Number will not only add to readers' enjoyment of mathematics, but to their problem-solving abilities as well.

This concise and easy-to-read textbook/reference presents an algorithmic approach to mathematical analysis, with a focus on modelling and on the applications of analysis. Fully integrating mathematical software into the text as an important component of analysis, the book makes thorough use of examples and explanations using MATLAB, Maple, and Java applets. Mathematical theory is described alongside the basic concepts and methods of numerical analysis, supported by computer experiments and programming exercises, and an extensive use of figure illustrations.

Topics and features: thoroughly describes the essential concepts of analysis, covering real and complex numbers, trigonometry, sequences and series, functions, derivatives and antiderivatives, definite integrals and double integrals, and curves; provides summaries and exercises in each chapter, as well as computer experiments; discusses important applications and advanced topics, such as fractals and L-systems, numerical integration, linear regression, and differential equations; presents tools from vector and matrix algebra in the appendices, together with further information on continuity; includes definitions, propositions and examples throughout the text, together with a list of relevant textbooks and references for further reading; supplementary software can be downloaded from the book’s webpage at www.springer.com.

This textbook is essential for undergraduate students in Computer Science. Written to specifically address the needs of computer scientists and researchers, it will also serve professionals looking to bolster their knowledge in such fundamentals extremely well.

The 21 self-contained chapters in this volume are devoted to the examination of modern trends and open problems in the field of optimization. This book will be a valuable tool not only to specialists interested in the technical detail and various applications presented, but also to researchers interested in building upon the book’s theoretical results.

The Second Edition is completely revised and provides additional review material on linear algebra as well as complete coverage of elementary linear programming. Other topics covered include: the Duality Theorem; transportation problems; the assignment problem; and the maximal flow problem. New figures and exercises are provided and the authors have updated all computer applications.

More review material on linear algebraElementary linear programming covered more efficientlyPresentation improved, especially for the duality theorem, transportation problems, the assignment problem, and the maximal flow problemNew figures and exercisesComputer applications updatedNew guide to inexpensive linear programming software for personal computersMultigrid methods are invaluable to researchers in scientific disciplines including physics, chemistry, meteorology, fluid and continuum mechanics, geology, biology, and all engineering disciplines. They are also becoming increasingly important in economics and financial mathematics.

Readers are presented with an invaluable summary covering 25 years of practical experience acquired by the multigrid research group at the Germany National Research Center for Information Technology. The book presents both practical and theoretical points of view.

* Covers the whole field of multigrid methods from its elements up to the most advanced applications

* Style is essentially elementary but mathematically rigorous

* No other book is so comprehensive and written for both practitioners and students

Engineering Informatics: Fundamentals of Computer-Aided Engineering, 2nd Edition provides the foundation knowledge of computing that is essential for all engineers. This knowledge is independent of hardware and software characteristics and thus, it is expected to remain valid throughout an engineering career. This Second Edition is enhanced with treatment of new areas such as network science and the computational complexity of distributed systems.

Key features:

Provides extensive coverage of almost all aspects of Computer-Aided Engineering, outlining general concepts such as fundamental logic, definition of engineering tasks and computational complexity Every chapter revised and expanded following more than ten years of experience teaching courses on the basis of the first edition Covers numerous representation frameworks and reasoning strategies Considers the benefits of increased computational power, parallel computing and cloud computing Offers many practical engineering examples and exercises, with lecture notes available for many of the topics/chapters from the ASCE Technical Council on Computing and Information Technology, Global Centre of Excellence in Computing (www.asceglobalcenter.org), providing a valuable resource for lecturers. Accompanied by a website hosting updates and solutionsEngineering Informatics: Fundamentals of Computer-Aided Engineering, 2nd Edition provides essential knowledge on computing theory in engineering contexts for students, researchers and practising engineers.

This first Moo School book will introduce your preschooler or toddler to numbers, from 1 to 10!

Whether you are a student struggling to fulfill a math or science requirement, or you are embarking on a career change that requires a new skill set, A Mind for Numbers offers the tools you need to get a better grasp of that intimidating material. Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. She flunked her way through high school math and science courses, before enlisting in the army immediately after graduation. When she saw how her lack of mathematical and technical savvy severely limited her options—both to rise in the military and to explore other careers—she returned to school with a newfound determination to re-tool her brain to master the very subjects that had given her so much trouble throughout her entire life.

In A Mind for Numbers, Dr. Oakley lets us in on the secrets to learning effectively—secrets that even dedicated and successful students wish they’d known earlier. Contrary to popular belief, math requires creative, as well as analytical, thinking. Most people think that there’s only one way to do a problem, when in actuality, there are often a number of different solutions—you just need the creativity to see them. For example, there are more than three hundred different known proofs of the Pythagorean Theorem. In short, studying a problem in a laser-focused way until you reach a solution is not an effective way to learn. Rather, it involves taking the time to step away from a problem and allow the more relaxed and creative part of the brain to take over. The learning strategies in this book apply not only to math and science, but to any subject in which we struggle. We all have what it takes to excel in areas that don't seem to come naturally to us at first, and learning them does not have to be as painful as we might think!

From the Trade Paperback edition.

The applied techniques include those that arise in the present literature. The supporting mathematical theory includes the general convergence theory. This material should be readily accessible to students with basic knowledge of mathematical analysis, Lebesgue measure and the basics of Hilbert spaces and Banach spaces. Nevertheless, we have made the book free standing in most respects. Most importantly, the terminology is introduced, explained and developed as needed.

The examples presented are taken from multiple vital application areas including finance, aerospace, mathematical biology and fluid mechanics. The text may be used as the basis for several distinct lecture courses or as a reference. For instance, this text will support a general applications course or an FEM course with theory and applications. The presentation of material is empirically-based as more and more is demanded of the reader as we progress through the material. By the end of the text, the level of detail is reminiscent of journal articles. Indeed, it is our intention that this material be used to launch a research career in numerical PDE.

Contents:Modeling and Visualization:Some PreliminariesProblems with Closed Form SolutionNumerical Solutions to Steady-State ProblemsPopulation ModelsTransient Problems in One Spatial DimensionTransient Problems in Two Spatial DimensionsMethods and Theory:Finite Difference MethodFinite Element Method, the TechniquesFinite Element Method, the TheoryCollocation Method

Readership: Graduate students and researchers.

Key Features:There is no text/reference book that covers as broad a list of techniques as completely and as efficientlyWe accomplish this by judiciously selecting preliminary material that is essential

Reimer takes you on a lively and entertaining tour of the ancient Egyptian world, providing rich historical details and amusing anecdotes as he presents a host of mathematical problems drawn from different eras of the Egyptian past. Each of these problems is like a tantalizing puzzle, often with a beautiful and elegant solution. As you solve them, you’ll be immersed in many facets of Egyptian life, from hieroglyphs and pyramid building to agriculture, religion, and even bread baking and beer brewing.

Fully illustrated in color throughout, Count Like an Egyptian also teaches you some Babylonian computation—the precursor to our modern system—and compares ancient Egyptian mathematics to today’s math, letting you decide for yourself which is better.

The author presents the first extended treatment of MM algorithms, which are ideal for high-dimensional optimization problems in data mining, imaging, and genomics; derives numerous algorithms from a broad diversity of application areas, with a particular emphasis on statistics, biology, and data mining; and summarizes a large amount of literature that has not reached book form before.

Practice makes man perfect, and to learn Mathematics, one needs continuous practice to master the required skills. Mathematics is useful for each & every Individual in day-to-day life. Fast calculation skills have played a vital role in Maths. Mental vigilance and logical efficiency are highly required to solve the Numerical Ability Section of any competitive exam.

Rather than using traditional methods for solving sums, we can use tips and tricks included in Vedic Maths is a simple system of Mathematics. It is very effective and at the same time it is easy to learn. One can do calculations much faster with Vedic Maths than with the conventional method taught in schools.

This book will assist you in your pursuit of superior mathematical abilities. The essential features of this book are:

(A) When you solve the whole book it teaches the right approach of dealing with similar questions as well as each and every new rule and trick.

(B) All types of basic mathematical questions based on the Tricky Approach.

(C) New techniques and fast track methods even for basic mathematical operations such as addition and multiplication.

(D) Basic rules at the beginning of each chapter, followed by illustrative examples to explain the essence of each topic.

The math we learn in school can seem like a dull set of rules, laid down by the ancients and not to be questioned. In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it.

Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer?

How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God.

Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.

For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.

There is a selected solutions manual for instructors for the new edition.

The second part of the book begins with a consideration of various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. The second part also describes some of the many applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. The brief coverage in this part illustrates the matrix theory developed in the first part of the book. The first two parts of the book can be used as the text for a course in matrix algebra for statistics students, or as a supplementary text for various courses in linear models or multivariate statistics.

The third part of this book covers numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. This part is essentially self-contained, although it assumes some ability to program in Fortran or C and/or the ability to use R/S-Plus or Matlab. This part of the book can be used as the text for a course in statistical computing, or as a supplementary text for various courses that emphasize computations.

The book includes a large number of exercises with some solutions provided in an appendix.

Amy Langville and Carl Meyer provide the first comprehensive overview of the mathematical algorithms and methods used to rate and rank sports teams, political candidates, products, Web pages, and more. In a series of interesting asides, Langville and Meyer provide fascinating insights into the ingenious contributions of many of the field's pioneers. They survey and compare the different methods employed today, showing why their strengths and weaknesses depend on the underlying goal, and explaining why and when a given method should be considered. Langville and Meyer also describe what can and can't be expected from the most widely used systems.

The science of rating and ranking touches virtually every facet of our lives, and now you don't need to be an expert to understand how it really works. Who's #1? is the definitive introduction to the subject. It features easy-to-understand examples and interesting trivia and historical facts, and much of the required mathematics is included.

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.

This book addresses important aspects and fundamental concepts in hydrocarbon exploration and production. Moreover, new developments and recent advances in the relevant research areas are discussed, whereby special emphasis is placed on mathematical methods and modelling. The book reflects the multi-disciplinary character of the hydrocarbon production workflow, ranging from seismic data imaging, seismic analysis and interpretation and geological model building, to numerical reservoir simulation. Various challenges concerning the production workflow are discussed in detail.

The thirteen chapters of this joint work, authored by international experts from academic and industrial institutions, include survey papers of expository character as well as original research articles. Large parts of the material presented in this book were developed between November 2000 and April 2004 through the European research and training network NetAGES, "Network for Automated Geometry Extraction from Seismic". The new methods described here are currently being implemented as software tools at Schlumberger Stavanger Research, one of the world's largest service providers to the oil industry.

For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions.

And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.

See Additional Notes for instructions to download the highly interactive PC software. Used in thousands of schools and colleges worldwide the software is designed to work as an interactive textbook on your PC screen.

Comprising hundreds of menu selected colourful topics where the graphic images (from your eBook) are brought to life for every value change along with many additional learning software features.

A combined eBook and educational software package at a tiny fraction of the previously published price.

Chapters (958 topics): - Introduction, Electronics, Basic Electronics, DC Current Flow, Resistor Value Test, Simple DC Circuits, Types of Switching, Variable Voltages, Ohm's Law, DC Voltage, DC Current, Series/Parallel Resistors, AC Measurements, AC Voltage and Current, AC Theory, RCL Series Circuits, RCL Parallel Circuits, Capacitance, Capacitors, Inductance, Inductors, Impedance, Radio and Communication, Tuned Circuits, Attenuators, Passive Filters, Active Filters, Oscillators, Circuit Theorems, Complex Numbers, DC Power, AC Power, Silicon Controlled Rectifier, Power Supplies, Voltage Regulation, Magnetism, Electric Machines, Transformers, Three Phase Systems, Energy Transfer and Cost, Atomic Structures, Diode Theory, Diode Applications, Transistor Theory, Bipolar Transistor, Transistor Configurations, Active Transistor Circuits, Field Effect Transistors, Basic Operational Amplifier, Op-Amp Theory, Op-Amp Applications, Sum and Difference Amp, Analogue Multi-meter, Measurement, Component Testing, PIC Micro, PICa(R) Microcontroller, PICa(R) Architecture, PICa(R) Analogue to Digital, PICa(R) Byte Orientated Instructions, PICa(R) Bit Orientated Instructions, PICa(R) Literal and Control Instructions, Mechanics, Area, Surface Area and Symmetry, Volume, Compound Measures, Geometry, Motion, Machines, Optics, Computing, Hardware Devices, Data Structures, Data Files, Computer Systems, Data Handling, System Development, Computer Programming, Data Analysis, Binary Numbers, Binary Arithmetic, Digital, Logic Gates 1., Logic Gates 2., Logic Families, Flip Flops, Combinational Logic, Counters, Counting, Shift Registers, 555 Timer, Logic Interfacing, Boolean and DeMorgan's, Microprocessor, Micro-Computer, Data/Address Bus, Memory Addressing, Arithmetic and Logic Unit, Clock and Reset, Instructions and Control, Memory Cells, Microprocessor Memory, Addressing Modes, Instructions Set 1., Instructions Set 2., Instructions Set 3., Mathematics, Number Systems, Number Conversion, Number Types, Compound Measures, Roots, Angles and Parallels, Triangle Ratios, Triangle Angles, Percentages, Ratios, Fractions, Vectors, Circle Angles, Laws, Algebra 0., Algebra 1., Algebra 2., Mathematical Rules, Powers and Indices, Simplifying, Equations, Graphing, Slope and Translation, Curves and Angle Conversion, Personal Finance, Additional Notes.

The fun and easy way to get down to business with statistics

Stymied by statistics? No fear? this friendly guide offers clear, practical explanations of statistical ideas, techniques, formulas, and calculations, with lots of examples that show you how these concepts apply to your everyday life.

Statistics For Dummies shows you how to interpret and critique graphs and charts, determine the odds with probability, guesstimate with confidence using confidence intervals, set up and carry out a hypothesis test, compute statistical formulas, and more.

Tracks to a typical first semester statistics course Updated examples resonate with today's students Explanations mirror teaching methods and classroom protocolPacked with practical advice and real-world problems, Statistics For Dummies gives you everything you need to analyze and interpret data for improved classroom or on-the-job performance.