## Similar Ebooks

Therefore, the present monograph can serve as a reference for researchers working on heat conduction of macro- and micro-scales as well as on mathematical methods of physics. It can also serve as a text for graduate courses on heat conduction or on mathematical equations in physics.

Timeless and collectible, the lectures are essential reading, not just for students of physics but for anyone seeking an introduction to the field from the inimitable Feynman.

Integrated throughout the text are real-world applications that emphasize the relevance of thermodynamics principles to some of the most critical problems and issues of today, including a wealth of coverage of topics related to energy and the environment, biomedical/bioengineering, and emerging technologies.

Reif first introduces basic probability concepts and statistical methods used throughout all of physics. Statistical ideas are then applied to systems of particles in equilibrium to enhance an understanding of the basic notions of statistical mechanics, from which derive the purely macroscopic general statements of thermodynamics. Next, he turns to the more complicated equilibrium situations, such as phase transformations and quantum gases, before discussing nonequilibrium situations in which he treats transport theory and dilute gases at varying levels of sophistication. In the last chapter, he addresses some general questions involving irreversible processes and fluctuations.

A large amount of material is presented to facilitate students later access to more advanced works, to allow those with higher levels of curiosity to read beyond the minimum given on a topic, and to enhance understanding by presenting several ways of looking at a particular question. Formatting within the text either signals material that instructors can assign at their own discretion or highlights important results for easy reference to them. Additionally, by solving many of the 230 problems contained in the text, students activate and embed their knowledge of the subject matter.

The first half of the book focuses on water chillers and the second half addresses cooling towers. In both sections, the author includes the following material:

Fundamentals—basic information about systems and equipment, including how they and their various components work Design and Application—equipment sizing, selection, and application; details of piping, control, and water treatment; and special considerations such as noise control, electrical service, fire protection, and energy efficiency Operations and Maintenance—commissioning and programmed maintenance of components and systems, with guidelines and recommended specifications for procurement

This up-to-date book provides HVAC designers, building owners, operating and maintenance staff, architects, and mechanical contractors with definitive and practical guidance on the application, design, purchase, operation, and maintenance of water chillers and cooling towers. It offers helpful information for you to use on a daily basis, including checklists and troubleshooting guidelines.

The second edition yet. Each chapter presents its subject matter consistently, based on the classification of thermodynamic systems, properties, and derivations that illustrate important relationships among variables for finding the conditions for equilibrium. Each chapter also contains a summary of important concepts and relationships as well as examples and sample problems that apply appropriate strategies for solving real-world problems.

The up-to-date and complete coverage ofthermodynamic data, laws, definitions, strategies, and tools in Thermodynamics in Materials Science, Second Edition provides students and practicing engineers a valuable guide for producing and applying maps of equilibrium states to everyday applications in materials sciences.

At the outset the text explains the various key terms of thermodynamics with suitable examples and then thoroughly deals with the virial and cubic equations of state by showing the P-V-T (pressure, molar volume and temperature) relation of fluids. It elaborates on the first and second laws of thermodynamics and their applications with the help of numerous engineering examples. The text further discusses the concepts of exergy, standard property changes of chemical reactions, thermodynamic property relations and fugacity. The book also includes detailed discussions on residual and excess properties of mixtures, various activity coefficient models, local composition models, and group contribution methods. In addition, the text focuses on vapour-liquid and other phase equilibrium calculations, and analyzes chemical reaction equilibria and adiabatic reaction temperature for systems with complete and incomplete conversion of reactants.

key Features

Includes a large number of fully worked-out examples to help students master the concepts discussed.

Provides well-graded problems with answers at the end of each chapter to test and foster students’ conceptual understanding of the subject. The total number of solved examples and end-chapter exercises in the book are over 600.

Contains chapter summaries that review the major concepts covered.

The book is primarily designed for the undergraduate students of chemical engineering and its related disciplines such as petroleum engineering and polymer engineering. It can also be useful to professionals.

The Solution Manual containing the complete worked-out solutions to chapter-end exercises and problems is available for instructors.

Knowledge flow — A mobile learning platform provides Apps and Books.

Knowledge flow provides learning book of Engineering Thermodynamics. This book is for all engineering students and professionals across the world. Thermodynamics deals with heat and temperature and also their relation with work and energy. This book of thermodynamics describes Carnot engine cycle, entropy and laws of thermodynamics that partly describe a body of matter or radiation.

Contents:

1. Thermodynamic System and Control Volume

2. Zeroth law of Thermodynamics

3. First law of Thermodynamics

4. Thermodynamic processes

5. Second law of Thermodynamics

6. Entropy and Third Law of Thermodynamics

7. Working Fluids in Thermodynamics

8. Carnot Engine Cycle

9. Refrigeration Cycle

10. Vapour Compression and Absorption System

To find more education books, visit here http://knowledgeflow.in/books.

This comprehensive book is an earnest endeavour to apprise the readers with a thorough understanding of all important basic concepts and methods of fluid mechanics and hydraulic machines. The text is organised into sixteen chapters, out of which the first twelve chapters are more inclined towards imparting the conceptual aspects of fluids mechanics, while the remaining four chapters accentuate more on the details of hydraulic machines. The book is supplemented with solutions manual for instructors containing detailed solutions of all chapter-end unsolved problems. Primarily intended as a text for the undergraduate students of civil, mechanical, chemical and aeronautical engineering, this book will be of immense use to the postgraduate students of hydraulics engineering, water resources engineering, and fluids engineering.

Key features

• The book describes all concepts in easy-to-grasp language with diagrammatic representation and practical examples.

• A variety of worked-out examples are included within the text, illustrating the wide applications of fluid mechanics.

• Every chapter comprises summary that presents the main idea and relevant details of the topics discussed.

• Almost all chapters incorporate objective type questions of previous years’ GATE examinations, along with their answers and in-depth explanations.

• Previous years’ IES conventional questions are provided at the end of most of the chapters.

• A set of theoretical questions and numerous unsolved numerical problems are provided at the chapter-end to help the students from practice pointof-view.

• Every chapter consists of a section Suggested Reading comprising a list of publications that the students may refer for more detailed information.

Knowledge flow- A mobile learning platform provides Apps and Books.

Knowledge flow provides learning book of Fluid Mechanics. This book is for all engineering students and professionals across the world. Fluid Mechanics deals with forces and flow within fluids and this fluid mechanics book describes very basic concepts of fluid in an easiest way.

Contents:

1. Introduction to Fluid Mechanics

2. Properties of Fluids

3. Bernoulli's Theorem

4. Newton’s Law of Viscosity

5. Pascal's Law of Fluid Pressure

6. Fluid coupling

7. Pumps

8. Compressors

9. Hydraulic Turbine

10. Hydraulic Power Plant

To find more education books, visit here http://knowledgeflow.in/books.

To convey the evolution of nuclear science and engineering, historical figures and their contributions to evolution of the nuclear power industry are explored. Numerous examples are provided throughout the text, and are brought to life through life-like portraits, photographs, and colorful illustrations. The text follows a well-structured pedagogical approach, and provides a wide range of student learning features not available in other textbooks including useful equations, numerous worked examples, and lists of key web resources. As a bonus, a complete Solutions Manual and .PDF slides of all figures are available to qualified instructors who adopt the text. More than any other fundamentals book in a generation, it is student-friendly, and truly impressive in its design and its scope. It can be used for a one semester, a two semester, or a three semester course in the fundamentals of nuclear power. It can also serve as a great reference book for practicing nuclear scientists and engineers. To date, it has achieved the highest overall satisfaction of any mainstream nuclear engineering textbook available on the market today.

Beginning with the simplest of machines — the lever — the text proceeds to discussions of the block and tackle (pulleys and hoists), wheel and axle, the inclined plane and the wedge, the screw, and different types of gears (simple, spur, bevel, herringbone, spiral, worm, etc.). A chapter on the concept of work discusses the measurement of work, friction, and efficiency; this is followed by investigations of power, force, and pressure, with explanations of the uses of scales, balances, gauges, and barometers. The fundamentals of hydrostatic and hydraulic machines (such as the hydraulic braking system and the hydraulic press) are discussed in detail.

The remaining chapters cover machine elements (bearings and springs), basic mechanisms (gear differential, couplings, cams, clutches), the internal combustion engine and power trains (including explanations of various transmission systems — synchromesh, auxiliary, etc.).

Every concept is clearly defined, and discussions always build easily from elementary theory to specific applications familiar to anyone with the slightest interest in mechanics. Important concepts, machine components, and techniques are clearly illustrated in more than 200 diagrams, drawings, and cross-sections that reveal inner workings — all of these help to clarify even further an already clear and well-organized presentation.

Although it was originally designed for use in U.S. Naval Training Schools, this book can be used to great advantage as a basic text in mechanical engineering in standard technical schools, and it will be immensely valuable even to lay readers who desire a basic knowledge of mechanics.

Introduction to Internal Combustion Engines:

- Is ideal for students who are following specialist options in internal combustion engines, and also for students at earlier stages in their courses - especially with regard to laboratory work

- Will be useful to practising engineers for an overview of the subject, or when they are working on particular aspects of internal combustion engines that are new to them

- Is fully updated including new material on direct injection spark engines, supercharging and renewable fuels

- Offers a wealth of worked examples and end-of-chapter questions to test your knowledge

- Has a solutions manual availble online for lecturers at www.palgrave.com/engineering/stone

Part historical narrative, part scientific mystery-lifter, Chilled looks at the ice-pits of Persia (Iranians still call their fridge the 'ice-pit'), reports on a tug of war between 16 horses and the atmosphere, bears witness to ice harvests on the Regents Canal, and shows how bleeding sailors demonstrated to ship's doctors that heat is indestructible, featuring a cast of characters such as the Ice King of Boston, Galileo, Francis Bacon, and the ostracised son of a notorious 18th-century French traitor. As people learned more about what cold actually was, scientists invented machines for making it, with these first used in earnest to chill Australian lager. The principles behind those white boxes in the kitchen remain the same today, but refrigeration is not all about food – for example, a refrigerator is needed to make soap, penicillin or orange squash; without it, IVF would be impossible.

Refrigeration technology has also been crucial in some of the most important scientific breakthroughs of the last 100 years, from the discovery of superconductors to the search for the Higgs boson. And the fridge will still be pulling the strings behind the scenes as teleporters and intelligent computer brains turn our science-fiction vision of the future into fact.

Designed for upper-level undergraduates in mechanical, industrial, manufacturing, and materials engineering disciplines, this book covers complete manufacturing technology courses taught in engineering colleges and institutions worldwide. The book also addresses the needs of production and manufacturing engineers and technologists participating in related industries.

Combustion is a critical issue impacting energy utilization, sustainability, and climate change. The challenge is to design safe and efficient combustion systems for many types of fuels in a way that protects the environment and enables sustainable lifestyles. Emphasizing the use of combustion fundamentals in the engineering and design of combustion systems, this text provides detailed coverage of gaseous, liquid and solid fuel combustion, including focused coverage of biomass combustion, which will be invaluable to new entrants to the field.

Eight chapters address the fundamentals of combustion, including fuels, thermodynamics, chemical kinetics, flames, detonations, sprays, and solid fuel combustion mechanisms. Eight additional chapters apply these fundamentals to furnaces, spark ignition and diesel engines, gas turbines, and suspension burning, fixed bed combustion, and fluidized bed combustion of solid fuels.

Presenting a renewed emphasis on fundamentals and updated applications to illustrate the latest trends relevant to combustion engineering, the authors provide a number of pedagogic features, including:

Numerous tables with practical data and formulae that link combustion fundamentals to engineering practice Concise presentation of mathematical methods with qualitative descriptions of their use Coverage of alternative and renewable fuel topics throughout the text Extensive example problems, chapter-end problems, and references

These features and the overall fundamentals-to-practice nature of this book make it an ideal resource for undergraduate, first level graduate, or professional training classes. Students and practitioners will find that it is an excellent introduction to meeting the crucial challenge of engineering sustainable combustion systems in a cost-effective manner.

A solutions manual and additional teaching resources are available with qualifying course adoption.

* Beautifully illustrated with images relating to Newton’s life and works

* New introductions, specially written for this collection, by Professor Kenneth Richard Seddon, OBE (QUILL, The Queen’s University of Belfast)

* Images of how the books were first published, giving your eReader a taste of the original texts

* Excellent formatting of the texts

* Key works are fully illustrated with their original diagrams

* Features three biographies - discover Newton’s intriguing life

* Scholarly ordering of texts into chronological order and genres

Please visit www.delphiclassics.com to browse through our range of exciting titles

CONTENTS:

Scientific Works

PHILOSOPHIÆ NATURALIS PRINCIPIA MATHEMATICA

THE MATHEMATICAL PRINCIPLES OF NATURAL PHILOSOPHY (MOTTE TRANSLATION)

OPTICKS

Theological Works

THE CHRONOLOGY OF ANCIENT KINGDOMS AMENDED

OBSERVATIONS ON DANIEL AND THE APOCALYPSE OF ST. JOHN

AN HISTORICAL ACCOUNT OF TWO NOTABLE CORRUPTIONS OF SCRIPTURE

The Biographies

MEMOIRS OF SIR ISAAC NEWTON’S LIFE by William Stukeley

SIR ISAAC NEWTON by Sarah K. Bolton

SIR ISAAC NEWTON by Henry Martyn Taylor

Please visit www.delphiclassics.com to browse through our range of exciting titles or to purchase this eBook as a Parts Edition of individual eBooks

Taking the bang-whiz-thud approach, Denny first talks about internal ballistics—Bang!—from before gunpowder to the development of modern firearms. External ballistics—Whiz!—are next, with discussions about short- and long-range trajectories. Denny’s lesson ends with a Thud!—an explanation of terminal ballistics.

Throughout, Denny conveys applicable physics principles in a way that will appeal to technology buffs and ballistics enthusiasts alike. His fun and factual explanations are free of complicated equations; notes cover the key aspects of ballistics physics for the more technically inclined.

Denny has perfected this engaging balance of science and story. For study or hobby, Their Arrows Will Darken the Sun is an entertaining guide to the world of ballistics.

It provides simple and logical explanation of programmable logic controllers used in hydraulic and pneumatic circuits. The accompanying CD-ROM acquaints readers with the engineering specifications of several pumps and valves being manufactured by the industry.

KEY FEATURES

• Gives step-by-step methods of designing hydraulic and pneumatic circuits.

• Explains applications of hydraulic circuits in the machine tool industry.

• Elaborates on practical problems in a chapter on troubleshooting.

• Chapter-end review questions help students understand the fundamental principles and practical techniques for obtaining solutions.

NEW TO THE THIRD EDITION

• Provides clear drawings/circuits in the hydraulics section

• Discusses ‘Cartridge Valves’ independently in Chapter 11

• Includes a new chapter on ‘Hydraulic Proportional Valves’ (Chapter 12)

Providing the fundamental knowledge on how a typical hydraulic system generates, delivers, and deploys fluid power, Basics of Hydraulic Systems highlights the key configuration features of the components that are needed to support their functionality in a system, such as operating principles, structural features, functionalities, and applications of core composing elements. It also shows how those components work together to perform the designated power transmission task.

Moves from a System to Instructional ComponentsApproach

By presenting the ins and outs of hydraulic systems in an easy-to-follow way, this example-filled textbook provides students, engineers, and technical managers an effective nuts-and-bolts reference for studying the fundamentals of fluid power transmission technology. Rather than bogging readers down with extensive mathematical equations, this resource uses a visual, expressive approach with many graphic illustrations. It also includes examples and problems within each chapter and a solutions manual for qualifying course adoptions.

The text includes a section devoted to hydraulic energy storage and regeneration elements, since both play an important role in many hybrid power transmission systems, such as diesel-hydraulic hybrid vehicles. As a hydraulics expert and holder of seven US patents, the author’s experience gives readers a practical view of the field that they can then immediately apply.

Features

Provides a self-contained approach in finite difference methods for students and professionals Covers the use of finite difference methods in convective, conductive, and radiative heat transfer Presents numerical solution techniques to elliptic, parabolic, and hyperbolic problems Includes hybrid analytical–numerical approachesThe Second Edition includes a larger selection of examples and problems (with hints) in each chapter and continues the strong emphasis of the First Edition on the development and application of mathematical methods (mostly calculus) to the solution of problems in Classical Mechanics.

New material has been added to most chapters. For example, a new derivation of the Noether theorem for discrete Lagrangian systems is given and a modified Rutherford scattering problem is solved exactly to show that the total scattering cross section associated with a confined potential (i.e., which vanishes beyond a certain radius) yields the hard-sphere result. The Frenet-Serret formulas for the Coriolis-corrected projectile motion are presented, where the Frenet-Serret torsion is shown to be directly related to the Coriolis deflection, and a new treatment of the sleeping-top problem is given.

Thermal Energy Systems: Design and Analysis, Second Edition

presents basic concepts for simulation and optimization, and introduces simulation and optimization techniques for system modeling. This text addresses engineering economy, optimization, hydraulic systems, energy systems, and system simulation. Computer modeling is presented, and a companion website provides specific coverage of EES and Excel in thermal-fluid design. Assuming prior coursework in basic thermodynamics and fluid mechanics, this fully updated and improved text will guide students in Mechanical and Chemical Engineering as they apply their knowledge to systems analysis and design, and to capstone design project work.A versatile text that spans several courses in mechatronics, the book offers a strong foundation in such core subjects as dynamic system modeling, electronic components and analysis, mechanical components and analysis, robotics, sensors/transducers and instrumentation, stepper motors, dc and ac motors and drives, hydraulic and pneumatic actuators, fluidics, automatic control, digital processing and hardware, communication and interfacing, software tools, design, and prototyping. Appendices provide additional background on Laplace and Fourier transform techniques, and software tools including MATLABÒ, SIMULINKÒ, and LabVIEWÒ. The book emphasizes practical situations and applications with numerous worked examples, problems, and exercises. An entire chapter is devoted to practical case studies.

Mechatronics: An Integrated Approach seamlessly incorporates advanced theory and concepts, various considerations of practical applications including tools, instrumentation, design issues, automatic control, and industrial techniques using a reader-friendly, snapshot style that is ideal for students with a basic engineering background

The text provides material for undergraduate and graduate courses. At the introductory level, it covers heat engines, stable-equilibrium-state models for ideal-gas, incompressible-fluid and solid behaviors, heat, work and bulk-flow interactions, thermodynamic efficiency, energy conversion systems, energy, and availability/ At the intermediate level, it covers ideal and nonideal mixtures, chemical reactions, chemical equilibrium, and combustion.

At the advanced level, the unique non-traditional order of exposition of the basic concepts and principles (system, property, state, process, first law, energy, equilibrium, stable equilibrium, second law, entropy) allows rigorous general definitions of energy and entropy valid for all systems (large and small, few- and many- particles) and all states (stable and non-stable equilibrium, as well as non-equilibrium). In particular, entropy is defined before and independently of the definitions of temperature and heat, and of the simple-system model for many-particle systems.

The coverage of the book includes 13 topics relevant to classical mechanics, such as integration of one-dimensional equations of motion; the Hamiltonian equations of motion; and adiabatic invariants.

The book will be of great use to physics students studying classical mechanics.