## Similar Ebooks

What is math? How exactly does it work? And what do three siblings trying to share a cake have to do with it? In How to Bake Pi, math professor Eugenia Cheng provides an accessible introduction to the logic and beauty of mathematics, powered, unexpectedly, by insights from the kitchen. We learn how the béchamel in a lasagna can be a lot like the number five, and why making a good custard proves that math is easy but life is hard. At the heart of it all is Cheng's work on category theory, a cutting-edge "mathematics of mathematics," that is about figuring out how math works.

Combined with her infectious enthusiasm for cooking and true zest for life, Cheng's perspective on math is a funny journey through a vast territory no popular book on math has explored before. So, what is math? Let's look for the answer in the kitchen.

Game Theory means rigorous strategic thinking. It is based on the idea that everyone acts competitively and in his own best interest. With the help of mathematical models, it is possible to anticipate the actions of others in nearly all life's enterprises. This book includes down-to-earth examples and solutions, as well as charts and illustrations designed to help teach the concept. In The Complete Idiot's Guide® to Game Theory, Dr. Edward C. Rosenthal makes it easy to understand game theory with insights into:

? The history of the disciple made popular by John Nash, the mathematician dramatized in the film A Beautiful Mind

? The role of social behavior and psychology in this amazing discipline

? How important game theory has become in our society and why

It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived.

As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

Consisting of three parts, the first part deals with the application of quantum operator methods to financial transactions and population dynamics. Part two develops physical concepts, working from classical Lagrangian and Hamiltonian mechanics and leading to an introduction of quantum information and its application to decision making. The final part treats classical and quantum probability theory in some detail and deals, at a more advanced level, with the impact of quantum probabilities on common knowledge and common beliefs between agents in systems.

Quantum Methods in Social Science is a high level textbook for advanced undergraduate or graduate students of economics, finance and business, while also being of interest to those with a background in physics.

Request Inspection Copy

Contents:Quantum Counting: The Number Operator in a Social Science Context:IntroductionClassical Interlude: Modelling Population DynamicsA Quantum Description of SystemsQuantum CountingQuantum TransactionsQuantum MigrationMore Elaborate SystemsConclusionsReferences — Part IThe Quantum-Like Paradigm with Simple Applications:Taking a Step BackModeling Information with an Operational FormalismDecision Making and Quantum ProbabilityReferences — Part IIThe Quantum-Like Paradigm with Advanced Applications:Basics of Classical ProbabilityQuantum ProbabilityCommon KnowledgeQuantum(-Like) Formalization of Common KnowledgeExamplesAppendixReferences — Part III

Readership: Advanced undergraduate or graduate students of economics, finance and business, while also being of interest to those with a background in physics.

Scott Page gives a concise primer on how diversity happens, how it is maintained, and how it affects complex systems. He explains how diversity underpins system level robustness, allowing for multiple responses to external shocks and internal adaptations; how it provides the seeds for large events by creating outliers that fuel tipping points; and how it drives novelty and innovation. Page looks at the different kinds of diversity--variations within and across types, and distinct community compositions and interaction structures--and covers the evolution of diversity within complex systems and the factors that determine the amount of maintained diversity within a system.

Provides a concise and accessible introduction

Shows how diversity underpins robustness and fuels tipping points

Covers all types of diversity

The essential primer on diversity in complex adaptive systems

The book begins with an introduction followed by two chapters devoted to fundamentals, one covering classical and quantum probability, which also contains a brief introduction to quantum formalism, and another on an information approach to molecular biology, genetics and epigenetics. It then goes on to examine adaptive dynamics, including applications to biology, and non-Kolmogorov probability theory.

Next, the book discusses the possibility to apply the quantum formalism to model biological evolution, especially at the cellular level: genetic and epigenetic evolutions. It also presents a model of the epigenetic cellular evolution based on the mathematical formalism of open quantum systems. The last two chapters of the book explore foundational problems of quantum mechanics and demonstrate the power of usage of positive operator valued measures (POVMs) in biological science.

This book will appeal to a diverse group of readers including experts in biology, cognitive science, decision making, sociology, psychology, and physics; mathematicians working on problems of quantum probability and information and researchers in quantum foundations.

Topics include the normal structure of groups: subgroups; homomorphisms and quotients; series; direct products and the structure of finitely generated Abelian groups; and group action on groups. Additional subjects range from the arithmetical structure of groups to classical notions of transfer and splitting by means of group action arguments. More than 675 exercises, many accompanied by hints, illustrate and extend the material.

The University of Toronto Undergraduate Competition was founded to provide additional competition experience for undergraduates preparing for the Putnam competition, and is particularly useful for the freshman or sophomore undergraduate. Lecturers, instructors, and coaches for mathematics competitions will find this presentation useful. Many of the problems are of intermediate difficulty and relate to the first two years of the undergraduate curriculum. The problems presented may be particularly useful for regular class assignments. Moreover, this text contains problems that lie outside the regular syllabus and may interest students who are eager to learn beyond the classroom.

Joyner uses permutation puzzles such as the Rubik’s Cube and its variants, the 15 puzzle, the Rainbow Masterball, Merlin’s Machine, the Pyraminx, and the Skewb to explain the basics of introductory algebra and group theory. Subjects covered include the Cayley graphs, symmetries, isomorphisms, wreath products, free groups, and finite fields of group theory, as well as algebraic matrices, combinatorics, and permutations.

Featuring strategies for solving the puzzles and computations illustrated using the SAGE open-source computer algebra system, the second edition of Adventures in Group Theory is perfect for mathematics enthusiasts and for use as a supplementary textbook.

"This is a book which I wish I could put in the hands of every graduate student who has shown an interest in the elements of group theory. The first 10 chapters would give him an excellent foundation in group theory, and there would still remain 10 chapters for his delight." — Richard Hubert Bruck, American Mathematical Monthly

This encyclopedic treatment of the current knowledge of group theory was widely praised upon its 1959 publication for its readability and accessibility. Today this volume remains useful as an unsurpassed resource for learning and reviewing the basics of a fundamental and ever-expanding area of modern mathematics. Suitable for advanced undergraduate mathematics majors and graduate students in math, the treatment is largely self-contained and offers numerous helpful exercises.

The self-contained text opens with an overview of the basic theorems of Fourier analysis and the structure of locally compact Abelian groups. Subsequent chapters explore idempotent measures, homomorphisms of group algebras, measures and Fourier transforms on thin sets, functions of Fourier transforms, closed ideals in L1(G), Fourier analysis on ordered groups, and closed subalgebras of L1(G). Helpful Appendixes contain background information on topology and topological groups, Banach spaces and algebras, and measure theory.

This book is an indispensable resource for students and researchers in economics, mathematics, physics, sociology, and business.

Today physicists and mathematicians throughout the world are feverishly working on one of the most ambitious theories ever proposed: superstring theory. String theory, as it is often called, is the key to the Unified Field Theory that eluded Einstein for more than thirty years. Finally, the century-old antagonism between the large and the small-General Relativity and Quantum Theory-is resolved. String theory proclaims that all of the wondrous happenings in the universe, from the frantic dancing of subatomic quarks to the majestic swirling of heavenly galaxies, are reflections of one grand physical principle and manifestations of one single entity: microscopically tiny vibrating loops of energy, a billionth of a billionth the size of an atom. In this brilliantly articulated and refreshingly clear book, Greene relates the scientific story and the human struggle behind twentieth-century physics' search for a theory of everything.

Through the masterful use of metaphor and analogy, The Elegant Universe makes some of the most sophisticated concepts ever contemplated viscerally accessible and thoroughly entertaining, bringing us closer than ever to understanding how the universe works.

The approach aims to make all this interconnected material readily accessible to a beginning graduate (or an advanced undergraduate) student, while at the same time providing the research mathematician with a useful reference book in topological graph theory. The focus will be on beautiful connections, both elementary and deep, within mathematics that can best be described by the intuitively pleasing device of imbedding graphs of groups on surfaces.

It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived.

As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.

African-American and European-American family communication researchers come together in this volume to investigate such topics as how Black families communicate to manage the issue of racism; how Black parent-child communication is used to manage the derogation of Black children; the role of television in family communication about race; the similarities and differences between and among communication in Black, White, and biracial couples and families; and how family communication education can contribute to a brighter future for all. With the aim of developing a clearer understanding of the role that family communication plays in society's move toward a multicultural world, this volume provides a crucial examination of how families struggle with issues of ethnic cultural diversity.

This book is appropriate for second to fourth year undergraduates. In addition to the material traditionally taught at this level, the book contains several applications: Polya–Burnside Enumeration, Mutually Orthogonal Latin Squares, Error-Correcting Codes, and a classification of the finite groups of isometries of the plane and the finite rotation groups in Euclidean 3-space, semigroups and automata. It is hoped that these applications will help the reader achieve a better grasp of the rather abstract ideas presented and convince him/her that pure mathematics, in addition to having an austere beauty of its own, can be applied to solving practical problems.

Considerable emphasis is placed on the algebraic system consisting of the congruence classes mod n under the usual operations of addition and multiplication. The reader is thus introduced — via congruence classes — to the idea of cosets and factor groups. This enables the transition to cosets and factor objects to be relatively painless.

In this book, cosets, factor objects and homomorphisms are introduced early on so that the reader has at his/her disposal the tools required to give elegant proofs of the fundamental theorems. Moreover, homomorphisms play such a prominent role in algebra that they are used in this text wherever possible.

In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including:

a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebrasmotivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C)an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebrasa self-contained construction of the representations of compact groups, independent of Lie-algebraic argumentsThe second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula.

Review of the first edition:

This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended.

— The Mathematical Gazette

An essential primer for undergraduates making the leap to graduate work, the book begins with free groups—actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples.

Accessible to students who have taken a first course in abstract algebra, Office Hours with a Geometric Group Theorist also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.

The first section deals with linear algebra, including fields, vector spaces, homogeneous linear equations, determinants, and other topics. A second section considers extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, Noether equations, Jummer's fields, and more.

Dr. Milgram's section on applications discusses solvable groups, permutation groups, solution of equations by radicals, and other concepts.

"The author has an impressive knack for presenting the important and interesting ideas of algebra in just the right way, and he never gets bogged down in the dry formalism which pervades some parts of algebra." MATHEMATICAL REVIEWS

This book is intended as a basic text for a one-year course in algebra at the graduate level, or as a useful reference for mathematicians and professionals who use higher-level algebra. It successfully addresses the basic concepts of algebra. For the revised third edition, the author has added exercises and made numerous corrections to the text.

“The text is geared to the needs of the beginning graduate student, covering with complete, well-written proofs the usual major branches of groups, rings, fields, and modules...[n]one of the material one expects in a book like this is missing, and the level of detail is appropriate for its intended audience.” (Alberto Delgado, MathSciNet)

“This text promotes the conceptual understanding of algebra as a whole, and that with great methodological mastery. Although the presentation is predominantly abstract...it nevertheless features a careful selection of important examples, together with a remarkably detailed and strategically skillful elaboration of the more sophisticated, abstract theories.” (Werner Kleinert, Zentralblatt)

For the new edition, the author has completely rewritten the text, reorganized many of the sections, and even cut or shortened material which is no longer essential. He has added a chapter on Ext and Tor, as well as a bit of topology.

The chapters herein are arranged to provide insight into the breadth of studies unique to communication, acknowledging along the way the contributions of researchers from psychology, political science, and sociology. Heath and Bryant chart developments and linkages within and between ways of looking at communication. The volume establishes an orientation for the social scientific study of communication, discussing principles of research, and outlining the requirements for the development and evaluation of theories.

Appropriate for use in communication theory courses at the advanced undergraduate and graduate level, this text offers students insights to understanding the issues and possible answers to the question of what communication is in all forms and contexts.

Key topics and features of Basic Algebra:

*Linear algebra and group theory build on each other continually

*Chapters on modern algebra treat groups, rings, fields, modules, and Galois groups, with emphasis on methods of computation throughout

*Three prominent themes recur and blend together at times: the analogy between integers and polynomials in one variable over a field, the interplay between linear algebra and group theory, and the relationship between number theory and geometry

*Many examples and hundreds of problems are included, along with a separate 90-page section giving hints or complete solutions for most of the problems

*The exposition proceeds from the particular to the general, often providing examples well before a theory that incorporates them; includes blocks of problems that introduce additional topics and applications for further study

*Applications to science and engineering (e.g., the fast Fourier transform, the theory of error-correcting codes, the use of the Jordan canonical form in solving linear systems of ordinary differential equations, and constructions of interest in mathematical physics) appear in sequences of problems

Basic Algebra presents the subject matter in a forward-looking way that takes into account its historical development. It is suitable as a text in a two-semester advanced undergraduate or first-year graduate sequence in algebra, possibly supplemented by some material from Advanced Algebra at the graduate level. It requires of the reader only familiarity with matrix algebra, an understanding of the geometry and reduction of linear equations, and an acquaintance with proofs.

The authors outline how their positions have further diverged on a number of key issues, including the spatial geometry of the universe, inflationary versus cyclic theories of the cosmos, and the black-hole information-loss paradox. Though much progress has been made, Hawking and Penrose stress that physicists still have further to go in their quest for a quantum theory of gravity.

This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history.

John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).

The concluding chapters also cover a wide variety of further theorems, some not previously published in book form, including infinite symmetric and alternating groups, products of subgroups, the multiplicative group of a division ring, and FC groups.

Over 500 exercises in varying degrees of difficulty enable students to test their grasp of the material, which is largely self-contained (except for later chapters which presuppose some knowledge of linear algebra, polynomials, algebraic integers, and elementary number theory). Also included are a bibliography, index, and an index of notation.

Ideal as a text or for reference, this inexpensive paperbound edition of Group Theory offers mathematics students a lucid, highly useful introduction to an increasingly vital mathematical discipline. It will be welcomed by anyone in search of a cogent, thorough presentation that lends itself equally well to self-study or regular course work.

Beginning with introductory examples of the group concept, the text advances to considerations of groups of permutations, isomorphism, cyclic subgroups, simple groups of movements, invariant subgroups, and partitioning of groups. An appendix provides elementary concepts from set theory. A wealth of simple examples, primarily geometrical, illustrate the primary concepts. Exercises at the end of each chapter provide additional reinforcement.

Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study.

Provides physicists with a modern and accessible introduction to group theoryCovers applications to various areas of physics, including field theory, particle physics, relativity, and much moreTopics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much moreThe essential textbook for students and an invaluable resource for researchersFeatures a brief, self-contained treatment of linear algebraAn online illustration package is available to professorsSolutions manual (available only to professors)

Grounded in theoretical discussion, the chapters in this book introduce data collected by a broad range of methods, including attitude surveys, large statistical cohort studies, case studies, depth interviews, and group discussions. A number of contributors locate the theoretical discussion of affairs within the broader contemporary ordering of committed relationships, contrasting the liberating and empowering aspects of affairs with the damage they may inflict on society as a whole and on the lives of individuals and families. The themes of passion, transgression, secrecy, lies, betrayal, and gossip are common to a range of chapters throughout. The volume provides broad literature reviews and theoretical discussions concerning particular aspects of affairs, such as communication and jealousy. In addition, case studies are used for the more detailed exploration of heterosexual affairs and contemporary developments in gay male and lesbian relationships.

The State of Affairs will be of interest to researchers, scholars, and students in social psychology; communication; sociology; family, social, and clinical psychology; and for practitioners in couple counseling.

Key to this unique exposition is the large amount of background material presented so the book is accessible to a reader with relatively modest mathematical background. Historical information, examples, exercises are all woven into the text.

Lie Groups: An Approach through Invariants and Representations will engage a broad audience, including advanced undergraduates, graduates, mathematicians in a variety of areas from pure algebra to functional analysis and mathematical physics.

Part one covers the essentials of symmetry and group theory, including symmetry, point groups and representations. Part two deals with the application of group theory to vibrational spectroscopy, with chapters covering topics such as reducible representations and techniques of vibrational spectroscopy. In part three, group theory as applied to structure and bonding is considered, with chapters on the fundamentals of molecular orbital theory, octahedral complexes and ferrocene among other topics. Additionally in the second edition, part four focuses on the application of group theory to electronic spectroscopy, covering symmetry and selection rules, terms and configurations and d-d spectra.

Drawing on the author’s extensive experience teaching group theory to undergraduates, Group Theory for Chemists provides a focused and comprehensive study of group theory and its applications which is invaluable to the student of chemistry as well as those in related fields seeking an introduction to the topic.Provides a focused and comprehensive study of group theory and its applications, an invaluable resource to students of chemistry as well as those in related fields seeking an introduction to the topicPresents diagrams and problem-solving exercises to help students improve their understanding, including a new section on the application of group theory to electronic spectroscopyReviews the essentials of symmetry and group theory, including symmetry, point groups and representations and the application of group theory to vibrational spectroscopy

After an introductory chapter on group characters, repression modules, applications of ideas and results from group theory and the regular representation, the author offers penetrating discussions of the representation theory of rings with identity, the representation theory of finite groups, applications of the theory of characters, construction of irreducible representations and modular representations. Well-chosen exercises are included throughout to help students test their understanding of the material. An appendix on groups, rings, ideals, and fields, as well as a bibliography, round out this useful well-thought-out text.

Graduate students wishing to acquire some knowledge of representation theory will find this an excellent text for self-study. The book also lends itself to use as supplementary reading for a course in group theory or in the applications of representation theory to physics.

The course begins with the basic combinatorial principles of algebra: posets, chain conditions, Galois connections, and dependence theories. Here, the general Jordan–Holder Theorem becomes a theorem on interval measures of certain lower semilattices. This is followed by basic courses on groups, rings and modules; the arithmetic of integral domains; fields; the categorical point of view; and tensor products.

Beginning with introductory concepts and examples, each chapter proceeds gradually towards its more complex theorems. Proofs progress step-by-step from first principles. Many interesting results reside in the exercises, for example, the proof that ideals in a Dedekind domain are generated by at most two elements. The emphasis throughout is on real understanding as opposed to memorizing a catechism and so some chapters offer curiosity-driven appendices for the self-motivated student.