## Similar

An Introduction to Numerical Methods and Analysis, SecondEdition reflects the latest trends in the field, includesnew material and revised exercises, and offers a unique emphasis onapplications. The author clearly explains how to both construct andevaluate approximations for accuracy and performance, which are keyskills in a variety of fields. A wide range of higher-level methodsand solutions, including new topics such as the roots ofpolynomials, spectral collocation, finite element ideas, andClenshaw-Curtis quadrature, are presented from an introductoryperspective, and theSecond Edition also features:ulstyle="line-height: 25px; margin-left: 15px; margin-top: 0px; font-family: Arial; font-size: 13px;"Chapters and sections that begin with basic, elementarymaterial followed by gradual coverage of more advancedmaterialExercises ranging from simple hand computations to challengingderivations and minor proofs to programming exercisesWidespread exposure and utilization of MATLAB®An appendix that contains proofs of various theorems and othermaterial

The author can awaken for you a faculty which is surprisingly dormant in accountants, engineers, scientists, businesspeople, and others who work with figures. This is "number sense" — or the ability to recognize relations between numbers considered as whole quantities. Lack of this number sense makes it entirely possible for a scientist to be proficient in higher mathematics, but to bog down in the arithmetic of everyday life.

This book teaches the necessary mathematical techniques that schools neglect to teach: Horizontal addition, left to right multiplication and division, etc. You will learn a method of multiplication so rapid that you'll be able to do products in not much more time than it would take to write the problem down on paper.

This is not a collection of tricks that work in only a very few special cases, but a serious, capably planned course of basic mathematics for self-instruction. It contains over 9,000 short problems and their solutions for you to work during spare moments. Five or ten minutes spent daily on this book will, within ten weeks, give you a number sense that will double or triple your calculation speed.

This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A few new topics have been added, notably Sard’s theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures.

Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.

The Second Edition maintained the accessibility of the first, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis was placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard.

This revision of the Second Edition provides a thorough update of commands for the symbolic computation programs Mathematica or Maple, as well as additional computer exercises. As with the Second Edition, this material supplements the content but no computer skill is necessary to take full advantage of this comprehensive text.

Over 36,000 copies sold worldwideAccessible, practical yet rigorous approach to a complex topic--also suitable for self-studyExtensive update of appendices on Mathematica and Maple software packagesThorough streamlining of second edition's numbering systemFuller information on solutions to odd-numbered problemsAdditional exercises and hints guide students in using the latest computer modeling toolsThe first chapters of the book focus on the basic concepts and facts of analytic geometry, the theory of space curves, and the foundations of the theory of surfaces, including problems closely related to the first and second fundamental forms. The treatment of the theory of surfaces makes full use of the tensor calculus.

The later chapters address geodesics, mappings of surfaces, special surfaces, and the absolute differential calculus and the displacement of Levi-Cività. Problems at the end of each section (with solutions at the end of the book) will help students meaningfully review the material presented, and familiarize themselves with the manner of reasoning in differential geometry.

In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.

By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

Timeless and collectible, the lectures are essential reading, not just for students of physics but for anyone seeking an introduction to the field from the inimitable Feynman.

"Beautifully clear explanations of famously 'difficult' things," --Wall Street Journal

A Wall Street Journal Best Book of 2013

If you ever regretted not taking physics in college--or simply want to know how to think like a physicist--this is the book for you. In this bestselling introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

The principal aim of analysis of tensors is to investigate those relations which remain valid when we change from one coordinate system to another. This book on Tensors requires only a knowledge of elementary calculus, differential equations and classical mechanics as pre-requisites. It provides the readers with all the information about the tensors along with the derivation of all the tensorial relations/equations in a simple manner. The book also deals in detail with topics of importance to the study of special and general relativity and the geometry of differentiable manifolds with a crystal clear exposition. The concepts dealt within the book are well supported by a number of solved examples. A carefully selected set of unsolved problems is also given at the end of each chapter, and the answers and hints for the solution of these problems are given at the end of the book. The applications of tensors to the fields of differential geometry, relativity, cosmology and electromagnetism is another attraction of the present book.

This book is intended to serve as text for postgraduate students of mathematics, physics and engineering. It is ideally suited for both students and teachers who are engaged in research in General Theory of Relativity and Differential Geometry.

Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there.

For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.

It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples.

Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors.

The book covers key foundation topics:

o Taylor series methods

o Runge--Kutta methods

o Linear multistep methods

o Convergence

o Stability

and a range of modern themes:

o Adaptive stepsize selection

o Long term dynamics

o Modified equations

o Geometric integration

o Stochastic differential equations

The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

The extensively revised second edition provides further clarification of matters that typically give rise to difficulty in the classroom and restructures the chapters on logic to emphasize the role of consequence relations and higher-level rules, as well as including more exercises and solutions.

Topics and features: teaches finite mathematics as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear away confusions; provides numerous exercises, with selected solutions, to test and deepen the reader’s understanding.

This clearly-written text/reference is a must-read for first-year undergraduate students of computing. Assuming only minimal mathematical background, it is ideal for both the classroom and independent study.

The main focus is on manifolds in Euclidean space and the metric properties they inherit from it. Among the topics discussed are curvature and how it affects the shape of space, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.

Every number in this book is identified by its "field marks," "similar species," "personality," and "associations." For example, one field mark of the number 6 is that it is the first perfect number-- the sum of its divisors (1, 2, and 3) is equal to the number itself. Thus 28, the next perfect number, is a similar species. And the fact that 6 can easily be broken into 2 and 3 is part of its personality, a trait that is helpful when large numbers are being either multiplied or divided by 6. Associations with 6 include its relationship to the radius of a circle. In addition to such classifications, special attention is paid to dozens of other fascinating numbers, including zero, pi, 10 to the 76th power (the number of particles in the universe), transfinite and other exceptionally larger numbers, and the concept of infinity.

Ideal for beginners but organized to appeal to the mathematically literate, The Kingdom of Infinite Number will not only add to readers' enjoyment of mathematics, but to their problem-solving abilities as well.

What if you had to take an art class in which you were only taught how to paint a fence? What if you were never shown the paintings of van Gogh and Picasso, weren't even told they existed? Alas, this is how math is taught, and so for most of us it becomes the intellectual equivalent of watching paint dry.

In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we've never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space.

Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man's journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century's leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat's last theorem, that had seemed intractable before.

At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.

This concise and easy-to-read textbook/reference presents an algorithmic approach to mathematical analysis, with a focus on modelling and on the applications of analysis. Fully integrating mathematical software into the text as an important component of analysis, the book makes thorough use of examples and explanations using MATLAB, Maple, and Java applets. Mathematical theory is described alongside the basic concepts and methods of numerical analysis, supported by computer experiments and programming exercises, and an extensive use of figure illustrations.

Topics and features: thoroughly describes the essential concepts of analysis, covering real and complex numbers, trigonometry, sequences and series, functions, derivatives and antiderivatives, definite integrals and double integrals, and curves; provides summaries and exercises in each chapter, as well as computer experiments; discusses important applications and advanced topics, such as fractals and L-systems, numerical integration, linear regression, and differential equations; presents tools from vector and matrix algebra in the appendices, together with further information on continuity; includes definitions, propositions and examples throughout the text, together with a list of relevant textbooks and references for further reading; supplementary software can be downloaded from the book’s webpage at www.springer.com.

This textbook is essential for undergraduate students in Computer Science. Written to specifically address the needs of computer scientists and researchers, it will also serve professionals looking to bolster their knowledge in such fundamentals extremely well.

methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and

methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.

As a result, the book represents a blend of new methods in general computational analysis,

and specific, but also generic, techniques for study of systems theory ant its particular

branches, such as optimal filtering and information compression.

- Best operator approximation,

- Non-Lagrange interpolation,

- Generic Karhunen-Loeve transform

- Generalised low-rank matrix approximation

- Optimal data compression

- Optimal nonlinear filtering

Multigrid methods are invaluable to researchers in scientific disciplines including physics, chemistry, meteorology, fluid and continuum mechanics, geology, biology, and all engineering disciplines. They are also becoming increasingly important in economics and financial mathematics.

Readers are presented with an invaluable summary covering 25 years of practical experience acquired by the multigrid research group at the Germany National Research Center for Information Technology. The book presents both practical and theoretical points of view.

* Covers the whole field of multigrid methods from its elements up to the most advanced applications

* Style is essentially elementary but mathematically rigorous

* No other book is so comprehensive and written for both practitioners and students

Engineering Informatics: Fundamentals of Computer-AidedEngineering, 2nd Edition provides the foundation knowledge ofcomputing that is essential for all engineers. This knowledge isindependent of hardware and software characteristics and thus, itis expected to remain valid throughout an engineering career. ThisSecond Edition is enhanced with treatment of new areas such asnetwork science and the computational complexity of distributedsystems.

Key features:

Provides extensive coverage of almost all aspects ofComputer-Aided Engineering, outlining general concepts such asfundamental logic, definition of engineering tasks andcomputational complexityEvery chapter revised and expanded following more than tenyears of experience teaching courses on the basis of the firsteditionCovers numerous representation frameworks and reasoningstrategiesConsiders the benefits of increased computational power,parallel computing and cloud computingOffers many practical engineering examples and exercises, withlecture notes available for many of the topics/chapters from theASCE Technical Council on Computing and Information Technology,Global Centre of Excellence in Computing(www.asceglobalcenter.org), providing a valuable resource forlecturers.Accompanied by a website hosting updates and solutionsEngineering Informatics: Fundamentals of Computer-AidedEngineering, 2nd Edition provides essential knowledge oncomputing theory in engineering contexts for students, researchersand practising engineers.

". . . outstandingly appealing with regard to its style,contents, considerations of requirements of practice, choice ofexamples, and exercises."—Zentralblatt MATH

". . . carefully structured with many detailed workedexamples."—The Mathematical Gazette

The Second Edition of the highly regarded An Introductionto Numerical Methods and Analysis provides a fully revisedguide to numerical approximation. The book continues to beaccessible and expertly guides readers through the many availabletechniques of numerical methods and analysis.

An Introduction to Numerical Methods and Analysis, SecondEdition reflects the latest trends in the field, includes newmaterial and revised exercises, and offers a unique emphasis onapplications. The author clearly explains how to both construct andevaluate approximations for accuracy and performance, which are keyskills in a variety of fields. A wide range of higher-level methodsand solutions, including new topics such as the roots ofpolynomials, spectral collocation, finite element ideas, andClenshaw-Curtis quadrature, are presented from an introductoryperspective, and the Second Edition also features:

Chapters and sections that begin with basic, elementarymaterial followed by gradual coverage of more advancedmaterialExercises ranging from simple hand computations to challengingderivations and minor proofs to programming exercisesWidespread exposure and utilization of MATLABAn appendix that contains proofs of various theorems and othermaterialThe book is an ideal textbook for students in advancedundergraduate mathematics and engineering courses who areinterested in gaining an understanding of numerical methods andnumerical analysis.

The contributors are Marco Abate, Marco Arizzi, Alexander Blokh, Thierry Bousch, Xavier Buff, Serge Cantat, Tao Chen, Robert Devaney, Alexandre Dezotti, Tien-Cuong Dinh, Romain Dujardin, Hugo García-Compeán, William Goldman, Rotislav Grigorchuk, John Hubbard, Yunping Jiang, Linda Keen, Jan Kiwi, Genadi Levin, Daniel Meyer, John Milnor, Carlos Moreira, Vincente Muñoz, Viet-Anh Nguyên, Lex Oversteegen, Ricardo Pérez-Marco, Ross Ptacek, Jasmin Raissy, Pascale Roesch, Roberto Santos-Silva, Dierk Schleicher, Nessim Sibony, Daniel Smania, Tan Lei, William Thurston, Vladlen Timorin, Sebastian van Strien, and Alberto Verjovsky.

This first Moo School book will introduce your preschooler or toddler to numbers, from 1 to 10!

Reimer takes you on a lively and entertaining tour of the ancient Egyptian world, providing rich historical details and amusing anecdotes as he presents a host of mathematical problems drawn from different eras of the Egyptian past. Each of these problems is like a tantalizing puzzle, often with a beautiful and elegant solution. As you solve them, you’ll be immersed in many facets of Egyptian life, from hieroglyphs and pyramid building to agriculture, religion, and even bread baking and beer brewing.

Fully illustrated in color throughout, Count Like an Egyptian also teaches you some Babylonian computation—the precursor to our modern system—and compares ancient Egyptian mathematics to today’s math, letting you decide for yourself which is better.

This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourier Series and the Fourier Integral, Bessel Functions and Fourier-Bessel Series, and the Eigenfunction Method and its Applications to Mathematical Physics. Every chapter moves clearly from topic to topic and theorem to theorem, with many theorem proofs given. A total of 107 problems will be found at the ends of the chapters, including many specially added to this English-language edition, and answers are given at the end of the text. Richard Silverman's excellent translation makes this book readily accessible to mathematicians and math students, as well as workers and students in the fields of physics and engineering. He has also added a bibliography, containing suggestions for collateral and supplementary reading. 1962 edition.

Drawing on physics and mechanical engineering, Steven Vogel looks at how animals swim and fly, modes of terrestrial locomotion, organism responses to winds and water currents, circulatory and suspension-feeding systems, and the relationship between size and mechanical design. He also investigates links between the properties of biological materials--such as spider silk, jellyfish jelly, and muscle--and their structural and functional roles. Early chapters and appendices introduce relevant physical variables for quantification, and problem sets are provided at the end of each chapter. Comparative Biomechanics is useful for physical scientists and engineers seeking a guide to state-of-the-art biomechanics. For a wider audience, the textbook establishes the basic biological context for applied areas--including ergonomics, orthopedics, mechanical prosthetics, kinesiology, sports medicine, and biomimetics--and provides materials for exhibit designers at science museums.

Problem sets at the ends of chapters

Appendices cover basic background information

Updated and expanded documentation and materials

Revised figures and text

Increased coverage of friction, viscoelastic materials, surface tension, diverse modes of locomotion, and biomimetics

* Beautifully illustrated with images relating to Newton’s life and works

* New introductions, specially written for this collection, by Professor Kenneth Richard Seddon, OBE (QUILL, The Queen’s University of Belfast)

* Images of how the books were first published, giving your eReader a taste of the original texts

* Excellent formatting of the texts

* Key works are fully illustrated with their original diagrams

* Features three biographies - discover Newton’s intriguing life

* Scholarly ordering of texts into chronological order and genres

Please visit www.delphiclassics.com to browse through our range of exciting titles

CONTENTS:

Scientific Works

PHILOSOPHIÆ NATURALIS PRINCIPIA MATHEMATICA

THE MATHEMATICAL PRINCIPLES OF NATURAL PHILOSOPHY (MOTTE TRANSLATION)

OPTICKS

Theological Works

THE CHRONOLOGY OF ANCIENT KINGDOMS AMENDED

OBSERVATIONS ON DANIEL AND THE APOCALYPSE OF ST. JOHN

AN HISTORICAL ACCOUNT OF TWO NOTABLE CORRUPTIONS OF SCRIPTURE

The Biographies

MEMOIRS OF SIR ISAAC NEWTON’S LIFE by William Stukeley

SIR ISAAC NEWTON by Sarah K. Bolton

SIR ISAAC NEWTON by Henry Martyn Taylor

Please visit www.delphiclassics.com to browse through our range of exciting titles or to purchase this eBook as a Parts Edition of individual eBooks

In more practical terms, the book is a sequel to the author's Special Relativity in the same series, with some overlap in the treatment of tensors. The basic theory is presented using techniques, such as phase-plane analysis, that will already be familiar to mathematics undergraduates, and numerous problems, of varying levels of difficulty, are provided to test understanding. The latter chapters include the theoretical background to contemporary observational tests - in particular the detection of gravitational waves and the verification of the Lens-Thirring precession - and some introductory cosmology, to tempt the reader to further study.

While primarily designed as an introduction for final-year undergraduates and first-year postgraduates in mathematics, the book is also accessible to physicists who would like to see a more mathematical approach to the ideas.

Helps Students Better Understand Numerical Methods through Use of MATLAB®

The authors uniquely emphasize both theoretical numerical analysis and practical implementation of the algorithms in MATLAB, making the book useful for students in computational science and engineering. They provide students with simple, clear implementations instead of sophisticated usages of MATLAB functions.

All the Material Needed for a Numerical Analysis Course

Based on the authors’ own courses, the text only requires some knowledge of computer programming, advanced calculus, and difference equations. It includes practical examples, exercises, references, and problems, along with a solutions manual for qualifying instructors. Students can download MATLAB code from www.crcpress.com, enabling them to easily modify or improve the codes to solve their own problems.

Helping you overcome these hurdles, Hydraulic Power System Analysis demonstrates modern computer-aided analytical techniques used to model nonlinear, dynamic fluid power systems. Following an overview of fluid power, the authors examine various relevant fluid properties, energy calculations, and steady state and dynamic analysis along with a review of automatic control theory. Turning to modeling, the next few chapters address valves and motors and then apply dynamic modeling to examples relating to pumps, hydrostatic transmissions, and valves. The book includes a unique chapter showing how to combine flow resistance equations with the differential equations governing dynamic system performance. The final chapter translates electrical circuit theory concepts to noise attenuation in fluid power systems.

Illustrated with many equations, practical computer modeling examples, and exercises, Hydraulic Power System Analysis provides a much-needed modernization of dynamic modeling for fluid power systems using powerful computational tools.