## Similar

Everything you need to pass the exam and get the college credit you deserve.

CLEP* is the most popular credit-by-examination program in the country, accepted by more than 2,900 colleges and universities. For over 15 years, REA has helped students pass the CLEP* exam and earn college credit while reducing their tuition costs.

Our CLEP* test preps are perfect for adults returning to college (or attending for the first time), military service members, high-school graduates looking to earn college credit, or home-schooled students with knowledge that can translate into college credit.

There are many different ways to prepare for the CLEP*. What's best for you depends on how much time you have to study and how comfortable you are with the subject matter. Our test prep for CLEP* College Algebra and the free online tools that come with it, will allow you to create a personalized CLEP* study plan that can be customized to fit you: your schedule, your learning style, and your current level of knowledge.

Here's how it works:

Diagnostic exam at the REA Study Center focuses your study

Our online diagnostic exam pinpoints your strengths and shows you exactly where you need to focus your study. Armed with this information, you can personalize your prep and review where you need it the most.

Most complete subject review for CLEP* College Algebra

Our targeted review covers all the material you'll be expected to know for the exam and includes a glossary of must-know terms.

Two full-length practice exams

The online REA Study Center gives you two full-length practice tests and the most powerful scoring analysis and diagnostic tools available today. Instant score reports help you zero in on the CLEP* College Algebra topics that give you trouble now and show you how to arrive at the correct answer-so you'll be prepared on test day.

An introductory chapter traces concepts of abstract algebra from their historical roots. Succeeding chapters avoid the conventional format of definition-theorem-proof-corollary-example; instead, they take the form of a discussion with students, focusing on explanations and offering motivation. Each chapter rests upon a central theme, usually a specific application or use. The author provides elementary background as needed and discusses standard topics in their usual order. He introduces many advanced and peripheral subjects in the plentiful exercises, which are accompanied by ample instruction and commentary and offer a wide range of experiences to students at different levels of ability.

This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams.

Get down to the basics — get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals

Conquer proofs with confidence — follow easy-to-grasp instructions for understanding the components of a formal geometry proof

Take triangles in strides — learn how to take in a triangle's sides, analyze its angles, work through an SAS proof, and apply the Pythagorean Theorem

Polish up on polygons — get the lowdown on quadrilaterals and other polygons: their angles, areas, properties, perimeters, and much more

Open the book and find:

Plain-English explanations of geometry terms

Tips for tackling geometry proofs

The seven members of the quadrilateral family

Straight talk on circles

Essential triangle formulas

The lowdown on 3-D: spheres, cylinders, prisms, and pyramids

Ten things to use as reasons in geometry proofs

Learn to:

Core concepts about the geometry of shapes and geometry proofs

Critical theorems, postulates, and definitions

The principles and formulas you need to know

Instructors will find the latest edition pitched at a suitable level of difficulty and will appreciate its gradual increase in the level of sophistication as the student progresses through the book. Rather than inserting superficial applications at the expense of important mathematical concepts, the Beachy and Blair solid, well-organized treatment motivates the subject with concrete problems from areas that students have previously encountered, namely, the integers and polynomials over the real numbers.

Supplementary material for instructors and students available on the books Web site: www.math.niu.edu/~beachy/abstract_algebra/

This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related topics such as determinants, eigenvalues, and differential equations.

Table of Contents:

l. The Algebra of Matrices

2. Linear Equations

3. Vector Spaces

4. Determinants

5. Linear Transformations

6. Eigenvalues and Eigenvectors

7. Inner Product Spaces

8. Applications to Differential Equations

For the second edition, the authors added several exercises in each chapter and a brand new section in Chapter 7. The exercises, which are both true-false and multiple-choice, will enable the student to test his grasp of the definitions and theorems in the chapter. The new section in Chapter 7 illustrates the geometric content of Sylvester's Theorem by means of conic sections and quadric surfaces. 6 line drawings. lndex. Two prefaces. Answer section.

Hollywood actress and math whiz Danica McKellar has completely shattered the “math nerd” stereotype. For years, she’s been showing girls how to feel confident and ace their math classes – with style! With Girls Get Curves, she applies her winning techniques to high school geometry, giving readers the tools they need to feel great and totally “get” everything from congruent triangles to theorems, and more. Inside you’ll find:

· Time-saving tips and tricks for homework and tests

· Illuminating practice problems (and proofs!) with detailed solutions

· Totally relatable real-world examples

· True stories from Danica’s own life as an actress and math student

· A Troubleshooting Guide, for getting unstuck during even the trickiest proofs!

With Danica as a coach, girls everywhere can stop hiding from their homework and watch their scores rise!

About the Book

Established as a successful practical workbook series with more than 20 titles in the language learning category, Practice Makes Perfect now provides the same clear, concise approach and extensive exercises to key fields within mathematics. The key to the Practice Makes Perfect series is the extensive exercises that provide learners with all the practice they need for mastery.

In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diophantine problems, and congruences. Chapters 6 through 9 examine groups, rings, domains, fields, polynomial rings, and quadratic domains.Chapters 10 through 13 cover modular systems, modules and vector spaces, linear transformations and matrices, and the elementary theory of matrices. The author, Professor of Mathematics at the University of Pittsburgh, includes many examples and, at the end of each chapter, a large number of problems of varying levels of difficulty.

This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A few new topics have been added, notably Sard’s theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures.

Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.

The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions.

No prerequisites are assumed other than the usual demand for suitable mathematical maturity. Thus the text starts by discussing vector spaces, linear independence, span, basis, and dimension. The book then deals with linear maps, eigenvalues, and eigenvectors. Inner-product spaces are introduced, leading to the finite-dimensional spectral theorem and its consequences. Generalized eigenvectors are then used to provide insight into the structure of a linear operator.

After a brief overview, the approach begins with elementary toposes and advances to internal category theory, topologies and sheaves, geometric morphisms, and logical aspects of topos theory. Additional topics include natural number objects, theorems of Deligne and Barr, cohomology, and set theory. Each chapter concludes with a series of exercises, and an appendix and indexes supplement the text.

Key features of Number Theory: Structures, Examples, and Problems:

* A rigorous exposition starts with the natural numbers and the basics.

* Important concepts are presented with an example, which may also emphasize an application. The exposition moves systematically and intuitively to uncover deeper properties.

* Topics include divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, quadratic residues, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems are covered.

* Unique exercises reinforce and motivate the reader, with selected solutions to some of the problems.

* Glossary, bibliography, and comprehensive index round out the text.

Written by distinguished research mathematicians and renowned teachers, this text is a clear, accessible introduction to the subject and a source of fascinating problems and puzzles, from advanced high school students to undergraduates, their instructors, and general readers at all levels.

Can geometry be exciting?

It can for those who can appreciate the beauty of numbers and their relationships.

This book contains a meticulous geometric investigation of the 5 Platonic Solids and 5 other important polyhedra, as well as reference charts for each solid.

Poly (many) hedron (face) means "many faces." Polyhedra are 3 dimensional figures with 4 or more faces, or sides. These polyhedra are reflections of Nature herself, and a study of them provides insight into the way the world is structured. Nature is not only beautiful, but highly intelligent. As you explore the polyhedra in this book, this will become apparent over and over again.

The book contains a geometric explanation of the Phi Ratio and Fibonacci series, and a detailed analysis of the pentagon, which forms the basis for many of these solids. The pentagon is composed entirely of Phi relationships, and is integral to a proper understanding of sacred geometry.

With over 140 full-color illustrations, this book is perfect for teachers and students of geometry alike. It is a must for those who are serious about sacred geometry.

This book is dedicated to those who can appreciate the logic of numbers and the beauty of nature, for they are both aspects of the same unifying principle.

Prerequisites: knowledge of simple algebra and elementary trigonometry. No brainiac math skills required! Only the ability to appreciate nature's own logic.

Book #1 in the Geometric Explorations Series

From Loving Healing Press (www.LovingHealing.com)

As grandfather and grandson struggle with the question of whether there can ever be absolute certainty in mathematics or life, they are forced to reconsider their fundamental beliefs and choices. Their stories hinge on their explorations of parallel developments in the study of geometry and infinity--and the mathematics throughout is as rigorous and fascinating as the narrative and characters are compelling and complex.

Moving and enlightening, A Certain Ambiguity is a story about what it means to face the extent--and the limits--of human knowledge.

". . .recommended for the teacher and researcher as well as for graduate students. In fact, [it] has a place on every mathematician's bookshelf." -American Mathematical Monthly

Linear Algebra and Its Applications, Second Edition presents linear algebra as the theory and practice of linear spaces and linear maps with a unique focus on the analytical aspects as well as the numerous applications of the subject. In addition to thorough coverage of linear equations, matrices, vector spaces, game theory, and numerical analysis, the Second Edition features student-friendly additions that enhance the book's accessibility, including expanded topical coverage in the early chapters, additional exercises, and solutions to selected problems.

Beginning chapters are devoted to the abstract structure of finite dimensional vector spaces, and subsequent chapters address convexity and the duality theorem as well as describe the basics of normed linear spaces and linear maps between normed spaces.

Further updates and revisions have been included to reflect the most up-to-date coverage of the topic, including: The QR algorithm for finding the eigenvalues of a self-adjoint matrix

The Householder algorithm for turning self-adjoint matrices into tridiagonal form The compactness of the unit ball as a criterion of finite dimensionality of a normed linear space Additionally, eight new appendices have been added and cover topics such as: the Fast Fourier Transform; the spectral radius theorem; the Lorentz group; the compactness criterion for finite dimensionality; the characterization of commentators; proof of Liapunov's stability criterion; the construction of the Jordan Canonical form of matrices; and Carl Pearcy's elegant proof of Halmos' conjecture about the numerical range of matrices.

Clear, concise, and superbly organized, Linear Algebra and Its Applications, Second Edition serves as an excellent text for advanced undergraduate- and graduate-level courses in linear algebra. Its comprehensive treatment of the subject also makes it an ideal reference or self-study for industry professionals.

From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map.

Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast.

Alpha Teach Yourself Algebra I in 24 Hours provides readers with a structured, self-paced, straight-forward tutorial on algebra. It's the perfect textbook companion for students struggling with algebra, a solid primer for those looking to get a head start on an upcoming class, and a welcome refresher for parents tasked with helping out with homework. The book provides 24 one-hour lessons, with each chapter designed to build on the previous one.

? Covers classifying number sets, expressions, polynomials, factoring, radicals, exponents and logarithms, and much more

? Each chapter ends with a quiz so readers can identify where they may need more help

Newly enlarged, updated second edition of a valuable, widely used text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discussed are binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. New to this edition: Chapter 9 shows how to mix known algorithms and create new ones, while Chapter 10 presents the "Chop-Sticks" algorithm, used to obtain all minimum cuts in an undirected network without applying traditional maximum flow techniques. This algorithm has led to the new mathematical specialty of network algebra. The text assumes no background in linear programming or advanced data structure, and most of the material is suitable for undergraduates. 153 black-and-white illus. 23 tables. Exercises, with answers at the ends of chapters.

Each main topic is treated in depth from its historical conception through to its status today. Many beautiful solutions have emerged for basic chessboard problems since mathematicians first began working on them in earnest over three centuries ago, but such problems, including those involving polyominoes, have now been extended to three-dimensional chessboards and even chessboards on unusual surfaces such as toruses (the equivalent of playing chess on a doughnut) and cylinders. Using the highly visual language of graph theory, Watkins gently guides the reader to the forefront of current research in mathematics. By solving some of the many exercises sprinkled throughout, the reader can share fully in the excitement of discovery.

Showing that chess puzzles are the starting point for important mathematical ideas that have resonated for centuries, Across the Board will captivate students and instructors, mathematicians, chess enthusiasts, and puzzle devotees.

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.

Readership: Undergraduates, graduates and mathematicians.

keywords:Binomial Coefficients;Multinomial Coefficients;Euler Ï-Function;Enumerative Combinatorics;Addition Principle;Multiplication Principle;Combination;Permutation;Identities;Pigeon Hole Principle;Ramsey Numbers;Principle of Inclusion and Exclusion;Stirling Numbers;Derangements;Problem of MÃ©nages;Sieve of Eratosthenes;Generating Functions;Partitions of Integers;Exponential Generating Functions;Recurrence Relations;Characteristic Polynomial;Catalan Numbers

“This book should be a must for all mathematicians who are involved in the training of Mathematical Olympiad teams, but it will also be a valuable source of problems for university courses.”

Mathematical Reviews“This volume is ground-breaking in terms of mathematical texts in that it does not teach from a detached perspective, but instead, looks to show students that competent mathematicians bring an intuitive understanding to the subject rather than just a master of applications.”

– Electric Review

A comprehensive introduction, Linear Algebra: Ideas and Applications, Fourth Edition provides a discussion of the theory and applications of linear algebra that blends abstract and computational concepts. With a focus on the development of mathematical intuition, the book emphasizes the need to understand both the applications of a particular technique and the mathematical ideas underlying the technique.

The book introduces each new concept in the context of an explicit numerical example, which allows the abstract concepts to grow organically out of the necessity to solve specific problems. The intuitive discussions are consistently followed by rigorous statements of results and proofs.

Linear Algebra: Ideas and Applications, Fourth Edition also features:

Two new and independent sections on the rapidly developing subject of wavelets A thoroughly updated section on electrical circuit theory Illuminating applications of linear algebra with self-study questions for additional study End-of-chapter summaries and sections with true-false questions to aid readers with further comprehension of the presented material Numerous computer exercises throughout using MATLAB® codeLinear Algebra: Ideas and Applications, Fourth Edition is an excellent undergraduate-level textbook for one or two semester courses for students majoring in mathematics, science, computer science, and engineering. With an emphasis on intuition development, the book is also an ideal self-study reference.

The superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine.

What else is new?

New chapters on measurement and analytic graph theory

Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing.

Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth

Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition

Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader

Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.

Classroom tested and revised until students achieved consistent, positive results, this textbook is designed to keep students focused as they learn complex topics. Fine, Gaglione, and Rosenberger’s clear explanations prevent students from getting lost as they move deeper and deeper into areas such as abelian groups, fields, and Galois theory.

This textbook will help bring about the day when abstract algebra no longer creates intense anxiety but instead challenges students to fully grasp the meaning and power of the approach.

Topics covered include:• Rings• Integral domains• The fundamental theorem of arithmetic• Fields• Groups• Lagrange’s theorem• Isomorphism theorems for groups• Fundamental theorem of finite abelian groups• The simplicity of A n for n 5• Sylow theorems• The Jordan-Hölder theorem• Ring isomorphism theorems• Euclidean domains• Principal ideal domains• The fundamental theorem of algebra• Vector spaces• Algebras• Field extensions: algebraic and transcendental• The fundamental theorem of Galois theory• The insolvability of the quintic

The book begins by tracing the development of cryptology from that of an arcane practice used, for example, to conceal alchemic recipes, to the modern scientific method that is studied and employed today. The remainder of the book explores the modern aspects and applications of cryptography, covering symmetric- and public-key cryptography, cryptographic protocols, key management, message authentication, e-mail and Internet security, and advanced applications such as wireless security, smart cards, biometrics, and quantum cryptography. The author also includes non-cryptographic security issues and a chapter devoted to information theory and coding. Nearly 200 diagrams, examples, figures, and tables along with abundant references and exercises complement the discussion.

Written by leading authority and best-selling author on the subject Richard A. Mollin, Codes: The Guide to Secrecy from Ancient to Modern Times is the essential reference for anyone interested in this exciting and fascinating field, from novice to veteran practitioner.

The book's first five chapters give an exposition of the theory of infinity-categories that emphasizes their role as a generalization of ordinary categories. Many of the fundamental ideas from classical category theory are generalized to the infinity-categorical setting, such as limits and colimits, adjoint functors, ind-objects and pro-objects, locally accessible and presentable categories, Grothendieck fibrations, presheaves, and Yoneda's lemma. A sixth chapter presents an infinity-categorical version of the theory of Grothendieck topoi, introducing the notion of an infinity-topos, an infinity-category that resembles the infinity-category of topological spaces in the sense that it satisfies certain axioms that codify some of the basic principles of algebraic topology. A seventh and final chapter presents applications that illustrate connections between the theory of higher topoi and ideas from classical topology.

"The author has an impressive knack for presenting the important and interesting ideas of algebra in just the right way, and he never gets bogged down in the dry formalism which pervades some parts of algebra." MATHEMATICAL REVIEWS

This book is intended as a basic text for a one-year course in algebra at the graduate level, or as a useful reference for mathematicians and professionals who use higher-level algebra. It successfully addresses the basic concepts of algebra. For the revised third edition, the author has added exercises and made numerous corrections to the text.

* The only desktop geometrical tolerancing reference

* For all CAD users, engineers, designers, drafting professionals and anyone who needs to specify or interpret product specifications to international standards

* Simple and quick to use, visually indexed, large format presentation for ease of use

“The text is geared to the needs of the beginning graduate student, covering with complete, well-written proofs the usual major branches of groups, rings, fields, and modules...[n]one of the material one expects in a book like this is missing, and the level of detail is appropriate for its intended audience.” (Alberto Delgado, MathSciNet)

“This text promotes the conceptual understanding of algebra as a whole, and that with great methodological mastery. Although the presentation is predominantly abstract...it nevertheless features a careful selection of important examples, together with a remarkably detailed and strategically skillful elaboration of the more sophisticated, abstract theories.” (Werner Kleinert, Zentralblatt)

For the new edition, the author has completely rewritten the text, reorganized many of the sections, and even cut or shortened material which is no longer essential. He has added a chapter on Ext and Tor, as well as a bit of topology.

Translated from a well-known Russian work entitled Non-Elementary Problems in an Elementary Exposition, the chief aim of the book is to acquaint the readers with a variety of new mathematical facts, ideas, and methods. And while the majority of the problems represent questions in higher ("non-elementary") mathematics, most can be solved with elementary mathematics. In fact, for the most part, no knowledge of mathematics beyond a good high school course is required.

Volume One contains 100 problems, with detailed solutions, all dealing with probability theory and combinatorial analysis. Topics include the representation of integers as sums and products, combinatorial problems on the chessboard, geometric problems on combinatorial analysis, problems on the binomial coefficients, problems on computing probabilities, experiments with infinitely many possible outcomes, and experiments with a continuum of possible outcomes.

Volume Two contains 74 problems from various branches of mathematics, dealing with such topics as points and lines, lattices of points in the plane, topology, convex polygons, distribution of objects, nondecimal counting, theory of primes, and more. In both volumes the statements of the problems are given first, followed by a section giving complete solutions. Answers and hints are given at the end of the book.

Ideal as a text, for self-study, or as a working resource for a mathematics club, this wide-ranging compilation offers 174 carefully chosen problems that will test the mathematical acuity and problem-solving skills of almost any student, teacher, or mathematician.

The focus throughout is rooted in the mathematical fundamentals, but the text also investigates a number of interesting applications, including a section on computer graphics, a chapter on numerical methods, and many exercises and examples using MATLAB. Meanwhile, many visuals and problems (a complete solutions manual is available to instructors) are included to enhance and reinforce understanding throughout the book.

Brief yet precise and rigorous, this work is an ideal choice for a one-semester course in linear algebra targeted primarily at math or physics majors. It is a valuable tool for any professor who teaches the subject.

László Lovász is a Senior Researcher in the Theory Group at Microsoft Corporation. He is a recipient of the 1999 Wolf Prize and the Gödel Prize for the top paper in Computer Science. József Pelikán is Professor of Mathematics in the Department of Algebra and Number Theory at Eötvös Loránd University, Hungary. In 2002, he was elected Chairman of the Advisory Board of the International Mathematical Olympiad. Katalin Vesztergombi is Senior Lecturer in the Department of Mathematics at the University of Washington.

The University of Toronto Undergraduate Competition was founded to provide additional competition experience for undergraduates preparing for the Putnam competition, and is particularly useful for the freshman or sophomore undergraduate. Lecturers, instructors, and coaches for mathematics competitions will find this presentation useful. Many of the problems are of intermediate difficulty and relate to the first two years of the undergraduate curriculum. The problems presented may be particularly useful for regular class assignments. Moreover, this text contains problems that lie outside the regular syllabus and may interest students who are eager to learn beyond the classroom.

Imhausen shows that from the earliest beginnings, pharaonic civilization used numerical techniques to efficiently control and use their material resources and labor. Even during the Old Kingdom, a variety of metrological systems had already been devised. By the Middle Kingdom, procedures had been established to teach mathematical techniques to scribes in order to make them proficient administrators for their king. Imhausen looks at counterparts to the notation of zero, suggests an explanation for the evolution of unit fractions, and analyzes concepts of arithmetic techniques. She draws connections and comparisons to Mesopotamian mathematics, examines which individuals in Egyptian society held mathematical knowledge, and considers which scribes were trained in mathematical ideas and why.

Of interest to historians of mathematics, mathematicians, Egyptologists, and all those curious about Egyptian culture, Mathematics in Ancient Egypt sheds new light on a civilization's unique mathematical evolution.

Georgi E. Shilov, Professor of Mathematics at the Moscow State University, covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional algebras and their representations, with an appendix on categories of finite-dimensional spaces.

The author begins with elementary material and goes easily into the advanced areas, covering all the standard topics of an advanced undergraduate or beginning graduate course. The material is presented in a consistently clear style. Problems are included, with a full section of hints and answers in the back.

Keeping in mind the unity of algebra, geometry and analysis in his approach, and writing practically for the student who needs to learn techniques, Professor Shilov has produced one of the best expositions on the subject. Because it contains an abundance of problems and examples, the book will be useful for self-study as well as for the classroom.