## Similar

Whether you are a student struggling to fulfill a math or science requirement, or you are embarking on a career change that requires a new skill set, A Mind for Numbers offers the tools you need to get a better grasp of that intimidating material. Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. She flunked her way through high school math and science courses, before enlisting in the army immediately after graduation. When she saw how her lack of mathematical and technical savvy severely limited her options—both to rise in the military and to explore other careers—she returned to school with a newfound determination to re-tool her brain to master the very subjects that had given her so much trouble throughout her entire life.

In A Mind for Numbers, Dr. Oakley lets us in on the secrets to learning effectively—secrets that even dedicated and successful students wish they’d known earlier. Contrary to popular belief, math requires creative, as well as analytical, thinking. Most people think that there’s only one way to do a problem, when in actuality, there are often a number of different solutions—you just need the creativity to see them. For example, there are more than three hundred different known proofs of the Pythagorean Theorem. In short, studying a problem in a laser-focused way until you reach a solution is not an effective way to learn. Rather, it involves taking the time to step away from a problem and allow the more relaxed and creative part of the brain to take over. The learning strategies in this book apply not only to math and science, but to any subject in which we struggle. We all have what it takes to excel in areas that don't seem to come naturally to us at first, and learning them does not have to be as painful as we might think!

From the Trade Paperback edition.

The math we learn in school can seem like a dull set of rules, laid down by the ancients and not to be questioned. In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it.

Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer?

How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God.

Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.

This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing the mathematical model) and how to solve the equation (along with initial and boundary conditions). Written for advanced undergraduate and graduate students, as well as professionals working in the applied sciences, this clearly written book offers realistic, practical coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Each chapter contains a selection of relevant problems (answers are provided) and suggestions for further reading.

For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions.

And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.

The book begins with a short review of calculus and ordinary differential equations, then moves on to explore integral curves and surfaces of vector fields, quasi-linear and linear equations of first order, series solutions and the Cauchy Kovalevsky theorem. It then delves into linear partial differential equations, examines the Laplace, wave and heat equations, and concludes with a brief treatment of hyperbolic systems of equations.

Among the most important features of the text are the challenging problems at the end of each section which require a wide variety of responses from students, from providing details of the derivation of an item presented to solving specific problems associated with partial differential equations. Requiring only a modest mathematical background, the text will be indispensable to those who need to use partial differential equations in solving physical problems. It will provide as well the mathematical fundamentals for those who intend to pursue the study of more advanced topics, including modern theory.

Containing a careful selection of standard and timely topics, the Pocket Book of Integrals and Mathematical Formulas, Fourth Edition presents many numerical and statistical tables, scores of worked examples, and the most useful mathematical formulas for engineering and scientific applications. This fourth edition of a bestseller provides even more comprehensive coverage with the inclusion of several additional topics, all while maintaining its accessible, clear style and handy size.

New to the Fourth Edition

• An expanded chapter on series that covers many fascinating properties of the natural numbers that follow from number theory

• New applications such as geostationary satellite orbits and drug kinetics

• An expanded statistics section that discusses nonlinear regression as well as the normal approximation of the binomial distribution

• Revised format of the table of integrals for easier use of the forms and functions

Easy to Use on the Go

The book addresses a range of areas, from elementary algebra, geometry, matrices, and trigonometry to calculus, vector analysis, differential equations, and statistics. Featuring a convenient, portable size, it is sure to remain in the pockets or on the desks of all who use mathematical formulas and tables of integrals and derivatives.

In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal two?] or three?] semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.

Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent study will particularly appreciate the worked examples that appear throughout the text.

This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors’ intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs.

The Matlab and Maple software will be available for download from this website shortly.

www.pdecomp.net

Includes a spectrum of applications in science, engineering, applied mathematicsPresents a combination of numerical and analytical methodsProvides transportable computer codes in Matlab and MapleIngeniously relying on elementary algebra and just a smidgen of calculus, Professor Walker demonstrates how the underlying ideas behind wavelet analysis can be applied to solve significant problems in audio and image processing, as well in biology and medicine.

Nearly twice as long as the original, this new edition provides

· 104 worked examples and 222 exercises, constituting a veritable book of review material

· Two sections on biorthogonal wavelets

· A mini-course on image compression, including a tutorial on arithmetic compression

· Extensive material on image denoising, featuring a rarely covered technique for removing isolated, randomly positioned clutter

· Concise yet complete coverage of the fundamentals of time-frequency analysis, showcasing its application to audio denoising, and musical theory and synthesis

· An introduction to the multiresolution principle, a new mathematical concept in musical theory

· Expanded suggestions for research projects

· An enhanced list of references

· FAWAV: software designed by the author, which allows readers to duplicate described applications and experiment with other ideas.

To keep the book current, Professor Walker has created a supplementary website. This online repository includes ready-to-download software, and sound and image files, as well as access to many of the most important papers in the field.

The first part explores Markov processes and Brownian motion; the stochastic integral and stochastic differential equations; elliptic and parabolic partial differential equations and their relations to stochastic differential equations; the Cameron-Martin-Girsanov theorem; and asymptotic estimates for solutions. The section concludes with a look at recurrent and transient solutions.

Volume 2 begins with an overview of auxiliary results in partial differential equations, followed by chapters on nonattainability, stability and spiraling of solutions; the Dirichlet problem for degenerate elliptic equations; small random perturbations of dynamical systems; and fundamental solutions of degenerate parabolic equations. Final chapters examine stopping time problems and stochastic games and stochastic differential games. Problems appear at the end of each chapter, and a familiarity with elementary probability is the sole prerequisite.

Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure.

The book is arranged in four sections, devoted to realizing the universal principle force equals curvature:

Part I: The Euclidean Manifold as a Paradigm

Part II: Ariadne's Thread in Gauge Theory

Part III: Einstein's Theory of Special Relativity

Part IV: Ariadne's Thread in Cohomology

For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum.

Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).

Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible, combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger’s equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems.

The Third Edition is organized around four themes: methods of solution for initial-boundary value problems; applications of partial differential equations; existence and properties of solutions; and the use of software to experiment with graphics and carry out computations. With a primary focus on wave and diffusion processes, Beginning Partial Differential Equations, Third Edition also includes:

Proofs of theorems incorporated within the topical presentation, such as the existence of a solution for the Dirichlet problem The incorporation of Maple™ to perform computations and experiments Unusual applications, such as Poe’s pendulum Advanced topical coverage of special functions, such as Bessel, Legendre polynomials, and spherical harmonics Fourier and Laplace transform techniques to solve important problemsBeginning of Partial Differential Equations, Third Edition is an ideal textbook for upper-undergraduate and first-year graduate-level courses in analysis and applied mathematics, science, and engineering.

This book is suitable for researchers and graduate students working in complex approximation and its applications, mathematical analysis and numerical analysis.

The applied techniques include those that arise in the present literature. The supporting mathematical theory includes the general convergence theory. This material should be readily accessible to students with basic knowledge of mathematical analysis, Lebesgue measure and the basics of Hilbert spaces and Banach spaces. Nevertheless, we have made the book free standing in most respects. Most importantly, the terminology is introduced, explained and developed as needed.

The examples presented are taken from multiple vital application areas including finance, aerospace, mathematical biology and fluid mechanics. The text may be used as the basis for several distinct lecture courses or as a reference. For instance, this text will support a general applications course or an FEM course with theory and applications. The presentation of material is empirically-based as more and more is demanded of the reader as we progress through the material. By the end of the text, the level of detail is reminiscent of journal articles. Indeed, it is our intention that this material be used to launch a research career in numerical PDE.

Contents:Modeling and Visualization:Some PreliminariesProblems with Closed Form SolutionNumerical Solutions to Steady-State ProblemsPopulation ModelsTransient Problems in One Spatial DimensionTransient Problems in Two Spatial DimensionsMethods and Theory:Finite Difference MethodFinite Element Method, the TechniquesFinite Element Method, the TheoryCollocation Method

Readership: Graduate students and researchers.

Key Features:There is no text/reference book that covers as broad a list of techniques as completely and as efficientlyWe accomplish this by judiciously selecting preliminary material that is essential

The University of Toronto Undergraduate Competition was founded to provide additional competition experience for undergraduates preparing for the Putnam competition, and is particularly useful for the freshman or sophomore undergraduate. Lecturers, instructors, and coaches for mathematics competitions will find this presentation useful. Many of the problems are of intermediate difficulty and relate to the first two years of the undergraduate curriculum. The problems presented may be particularly useful for regular class assignments. Moreover, this text contains problems that lie outside the regular syllabus and may interest students who are eager to learn beyond the classroom.

Navigate fractions, decimals, and percents in business and real estate transactions, and take fancy math skills to work. You’ll be able to read graphs and tables and apply statistics and data analysis. You’ll discover ways you can use math in finance and payroll investments, banking and payroll, goods and services, and business facilities and operations. You’ll learn how to calculate discounts and markup, use loans and credit, and understand the ins and outs of math for business facilities and operations. You’ll be the company math whiz in no time at all! Find out how to:

Read graphs and tables Invest in the future Use loans and credit Navigate bank accounts, insurance, budgets, and payroll Calculate discounts and markup Measure properties and handle mortgages and loans Manage rental and commercial propertiesComplete with lists of ten math shortcuts to do in meetings and drive your coworkers nuts and ten tips for reading annual reports, Business MathFor Dummies is your one-stop guide to solving math problems in business situations.

Featuring more than 100 stunning color illustrations and requiring only a modest background in math, Creating Symmetry begins by addressing the enigma of a simple curve, whose curious symmetry seems unexplained by its formula. Farris describes how complex numbers unlock the mystery, and how they lead to the next steps on an engaging path to constructing waveforms. He explains how to devise waveforms for each of the 17 possible wallpaper types, and then guides you through a host of other fascinating topics in symmetry, such as color-reversing patterns, three-color patterns, polyhedral symmetry, and hyperbolic symmetry. Along the way, Farris demonstrates how to marry waveforms with photographic images to construct beautiful symmetry patterns as he gradually familiarizes you with more advanced mathematics, including group theory, functional analysis, and partial differential equations. As you progress through the book, you'll learn how to create breathtaking art images of your own.

Fun, accessible, and challenging, Creating Symmetry features numerous examples and exercises throughout, as well as engaging discussions of the history behind the mathematics presented in the book.

This book is not just about math, not just about computing, and not just about applications, but about all three--in other words, computational science. Whether used as an undergraduate textbook, for self-study, or for reference, it builds the foundation you need to make numerical modeling and simulation integral parts of your investigational toolbox.

An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, spectral collocation, finite element ideas, and Clenshaw-Curtis quadrature, are presented from an introductory perspective, and theSecond Edition also features: Chapters and sections that begin with basic, elementary material followed by gradual coverage of more advanced material Exercises ranging from simple hand computations to challenging derivations and minor proofs to programming exercises Widespread exposure and utilization of MATLAB® An appendix that contains proofs of various theorems and other material

Recent advances in the field, particularly Parrondo's paradox, have triggered a surge of interest in the statistical and mathematical theory behind gambling. This interest was acknowledge in the motion picture, "21," inspired by the true story of the MIT students who mastered the art of card counting to reap millions from the Vegas casinos. Richard Epstein's classic book on gambling and its mathematical analysis covers the full range of games from penny matching to blackjack, from Tic-Tac-Toe to the stock market (including Edward Thorp's warrant-hedging analysis). He even considers whether statistical inference can shed light on the study of paranormal phenomena. Epstein is witty and insightful, a pleasure to dip into and read and rewarding to study. The book is written at a fairly sophisticated mathematical level; this is not "Gambling for Dummies" or "How To Beat The Odds Without Really Trying." A background in upper-level undergraduate mathematics is helpful for understanding this work.

o Comprehensive and exciting analysis of all major casino games and variants o Covers a wide range of interesting topics not covered in other books on the subject o Depth and breadth of its material is unique compared to other books of this nature

Richard Epstein's website: www.gamblingtheory.net

The textbook presents only the most essential mathematical derivations, and places comments, discussion, and terminology in sidebars so that readers can follow the core material easily and without distraction. Annotated proofs with sidebars explain the techniques of proof construction, including contradiction, contraposition, cycles of implications to prove equivalence, and the difference between necessity and sufficiency. Annotated theoretical developments also use sidebars to discuss relevant commands available in MATLAB, allowing students to understand these important tools. The balanced chapters can each be covered in approximately two hours of lecture time, simplifying course planning and student review. Solutions to the theoretical and computational exercises are also available for instructors.

Easy-to-use textbook in unique lecture-style format Sidebars explain topics in further detail Annotated proofs and discussions of MATLAB commands Balanced chapters can each be taught in two hours of course lecture Solutions to exercises available to instructorsThis revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on • fast transforms• parallel LU• discrete Poisson solvers• pseudospectra• structured linear equation problems• structured eigenvalue problems• large-scale SVD methods• polynomial eigenvalue problems

Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature—everything needed to become a matrix-savvy developer of numerical methods and software.

Lawrence Weinstein and John Adam present an eclectic array of estimation problems that range from devilishly simple to quite sophisticated and from serious real-world concerns to downright silly ones. How long would it take a running faucet to fill the inverted dome of the Capitol? What is the total length of all the pickles consumed in the US in one year? What are the relative merits of internal-combustion and electric cars, of coal and nuclear energy? The problems are marvelously diverse, yet the skills to solve them are the same. The authors show how easy it is to derive useful ballpark estimates by breaking complex problems into simpler, more manageable ones--and how there can be many paths to the right answer. The book is written in a question-and-answer format with lots of hints along the way. It includes a handy appendix summarizing the few formulas and basic science concepts needed, and its small size and French-fold design make it conveniently portable. Illustrated with humorous pen-and-ink sketches, Guesstimation will delight popular-math enthusiasts and is ideal for the classroom.

Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation.

Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to:

Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audienceTogether, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!

The coverage of this book is based on the syllabus requirements of the BTEC First in Vehicle Technology, BTEC National in Vehicle Repair and Technology, and the IMI Certificate and Diploma in Vehicle Maintenance and Repair, but will help all automotive students and apprentices at levels 2 and 3 and up to and including HNC/HND, foundation and first degree with their studies and in achieving the Key Skill 'Application of Number' at levels 2 and 3. The book is designed to cater for both light and heavy vehicle courses.

Full worked solutions of most exercises are available as a free download for lecturers only from http://textbooks.elsevier.com.

Allan Bonnick is a motor vehicle education and training consultant and was formerly Head of Motor Vehicle Engineering, Eastbourne College. He is the author of several established automotive engineering textbooks.

This concise text offers undergraduates in mathematics and science a thorough and systematic first course in elementary differential equations. Presuming a knowledge of basic calculus, the book first reviews the mathematical essentials required to master the materials to be presented.

The next four chapters take up linear equations, those of the first order and those with constant coefficients, variable coefficients, and regular singular points. The last two chapters address the existence and uniqueness of solutions to both first order equations and to systems and n-th order equations.

Throughout the book, the author carries the theory far enough to include the statements and proofs of the simpler existence and uniqueness theorems. Dr. Coddington, who has taught at MIT, Princeton, and UCLA, has included many exercises designed to develop the student's technique in solving equations. He has also included problems (with answers) selected to sharpen understanding of the mathematical structure of the subject, and to introduce a variety of relevant topics not covered in the text, e.g. stability, equations with periodic coefficients, and boundary value problems.

• Enable accurate, complete and independent self education

• Holistic question answering techniques

• complete edition and concise edition eBooks available

The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction.

Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists.

A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material availableBassetti, a client, friend, and student of John Magee, one of the original authors, has converted the material on the craft of manual charting with TEKNIPLAT chart paper to modern computer software methods. In actuality, none of Magee’s concepts have proven invalid and some of his work predated modern concepts such as beta and volatility. In addition, Magee described a trend-following procedure that is so simple and so elegant that Bassetti has adapted it to enable the general investor to use it to replace the cranky Dow Theory. This procedure, called the Basing Points procedure, is extensively described in the new Tenth Edition along with new material on powerful moving average systems and Leverage Space Portfolio Model generously contributed by the formidable analyst, Ralph Vince., author of Handbook of Portfolio Mathematics.

See what’s new in the Tenth Edition:

Chapters on replacing Dow Theory Update of Dow Theory Record Deletion of extraneous material on manual charting New chapters on Stops and Basing Points New material on moving average systems New material on Ralph Vince’s Leverage Space Portfolio Model

So much has changed since the first edition, yet so much has remained the same. Everyone wants to know how to play the game. The foundational work of the discipline of technical analysis, this book gives you more than a technical formula for trading and investing, it gives you the knowledge and wisdom to craft long-term success.

“This book should be an essential part of the personal library of every practicing statistician.”—Technometrics

Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation.

Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features:

The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.All students taking vocational engineering courses who require fundamental knowledge of mathematics for engineering and do not have prior knowledge beyond basic school mathematics, will find this book essential reading. The content has been designed primarily to meet the needs of students studying Level 2 courses, including GCSE Engineering and Intermediate GNVQ, and is matched to BTEC First specifications. However Level 3 students will also find this text to be a useful resource for getting to grips with the essential mathematics concepts needed for their study, as the compulsory topics required in BTEC National and AVCE / A Level courses are also addressed.

The fourth edition incorporates new material on adding waveforms, graphs with logarithmic scales, and inequalities – key topics needed for GCSE and Level 2 study.

John Bird’s approach is based on numerous worked examples, supported by 600 worked problems, followed by 1050 further problems within exercises included throughout the text. In addition, 15 Assignments are included at regular intervals. Ideal for use as tests or homework, full solutions to the Assignments are supplied in the accompanying Instructor’s Manual, available as a free download for lecturers from http://textbooks.elsevier.com.

'Football looked at in a very different way' Pat Nevin, former Chelsea and Everton star and football media analyst

Football – the most mathematical of sports. From shot statistics and league tables to the geometry of passing and managerial strategy, the modern game is filled with numbers, patterns and shapes. How do we make sense of them? The answer lies in the mathematical models applied in biology, physics and economics.

Soccermatics brings football and mathematics together in a mind-bending synthesis, using numbers to help reveal the inner workings of the beautiful game.

This new and expanded edition analyses the current big-name players and teams using mathematics, and meets the professionals working inside football who use numbers and statistics to boost performance.

Welcome to the world of mathematical modelling, expressed brilliantly by David Sumpter through the prism of football. No matter who you follow – from your local non-league side to the big boys of the Premiership, La Liga, the Bundesliga, Serie A or the MLS – you'll be amazed at what mathematics has to teach us about the world's favourite sport.