## Similar

The book will be a valuable resource for researchers in stochastic analysis and professionals interested in stochastic methods in finance.

The Essentials For Dummies Series

Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.

Slay the calculus monster with this user-friendly guide

Calculus For Dummies, 2nd Edition makes calculus manageable—even if you're one of the many students who sweat at the thought of it. By breaking down differentiation and integration into digestible concepts, this guide helps you build a stronger foundation with a solid understanding of the big ideas at work. This user-friendly math book leads you step-by-step through each concept, operation, and solution, explaining the "how" and "why" in plain English instead of math-speak. Through relevant instruction and practical examples, you'll soon learn that real-life calculus isn't nearly the monster it's made out to be.

Calculus is a required course for many college majors, and for students without a strong math foundation, it can be a real barrier to graduation. Breaking that barrier down means recognizing calculus for what it is—simply a tool for studying the ways in which variables interact. It's the logical extension of the algebra, geometry, and trigonometry you've already taken, and Calculus For Dummies, 2nd Edition proves that if you can master those classes, you can tackle calculus and win.

Includes foundations in algebra, trigonometry, and pre-calculus concepts Explores sequences, series, and graphing common functions Instructs you how to approximate area with integration Features things to remember, things to forget, and things you can't get away withStop fearing calculus, and learn to embrace the challenge. With this comprehensive study guide, you'll gain the skills and confidence that make all the difference. Calculus For Dummies, 2nd Edition provides a roadmap for success, and the backup you need to get there.

1001 Calculus Practice Problems For Dummies takes you beyond the instruction and guidance offered in Calculus For Dummies, giving you 1001 opportunities to practice solving problems from the major topics in your calculus course. Plus, an online component provides you with a collection of calculus problems presented in multiple-choice format to further help you test your skills as you go.

Gives you a chance to practice and reinforce the skills you learn in your calculus course Helps you refine your understanding of calculus Practice problems with answer explanations that detail every step of every problemThe practice problems in 1001 Calculus Practice Problems For Dummies range in areas of difficulty and style, providing you with the practice help you need to score high at exam time.

Math textbooks can be as baffling as the subject they're teaching. Not anymore. The best-selling author of The Complete Idiot's Guide® to Calculus has taken what appears to be a typical calculus workbook, chock full of solved calculus problems, and made legible notes in the margins, adding missing steps and simplifying solutions. Finally, everything is made perfectly clear. Students will be prepared to solve those obscure problems that were never discussed in class but always seem to find their way onto exams.

--Includes 1,000 problems with comprehensive solutions

--Annotated notes throughout the text clarify what's being asked in each problem and fill in missing steps

--Kelley is a former award-winning calculus teacher

The articles are based on short courses given at the Centre Interfacultaire Bernoulli of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, from January to June 2012. They offer a valuable resource not only for specialists, but also for other researchers and Ph.D. students in the fields of stochastic analysis and mathematical physics.

Contributors:

S. Albeverio

M. Arnaudon

V. Bally

V. Barbu

H. Bessaih

Z. Brzeźniak

K. Burdzy

A.B. Cruzeiro

F. Flandoli

A. Kohatsu-Higa

S. Mazzucchi

C. Mueller

J. van Neerven

M. Ondreját

S. Peszat

M. Veraar

L. Weis

J.-C. Zambrini

This major survey of mathematics, featuring the work of 18 outstanding Russian mathematicians and including material on both elementary and advanced levels, encompasses 20 prime subject areas in mathematics in terms of their simple origins and their subsequent sophisticated developement. As Professor Morris Kline of New York University noted, "This unique work presents the amazing panorama of mathematics proper. It is the best answer in print to what mathematics contains both on the elementary and advanced levels."

Beginning with an overview and analysis of mathematics, the first of three major divisions of the book progresses to an exploration of analytic geometry, algebra, and ordinary differential equations. The second part introduces partial differential equations, along with theories of curves and surfaces, the calculus of variations, and functions of a complex variable. It furthur examines prime numbers, the theory of probability, approximations, and the role of computers in mathematics. The theory of functions of a real variable opens the final section, followed by discussions of linear algebra and nonEuclidian geometry, topology, functional analysis, and groups and other algebraic systems.

Thorough, coherent explanations of each topic are further augumented by numerous illustrative figures, and every chapter concludes with a suggested reading list. Formerly issued as a three-volume set, this mathematical masterpiece is now available in a convenient and modestly priced one-volume edition, perfect for study or reference.

"This is a masterful English translation of a stupendous and formidable mathematical masterpiece . . ." — Social Science

- Teaches general principles that can be applied to a wide variety of problems.

- Avoids the mindless and excessive routine computations that characterize conventional textbooks.

- Treats algebra as a logically coherent discipline, not as a disjointed collection of techniques.

- Restores proofs to their proper place to remove doubt, convey insight, and encourage precise logical thinking.

- Omits digressions, excessive formalities, and repetitive exercises.

- Covers all the algebra needed to take a calculus course.

- Includes solutions to all problems.

Contents

1. A Few Basics

2. Exponents

3. Polynomials

4. Factoring

5. Linear & Quadratic Equations

6. Inequalities & Absolute Values

7. Coordinates in a Plane

8. Functions & Graphs

9. Straight Lines

10. Circles

11. Parabolas

12. Types of Functions

13. Logarithms

14. Dividing Polynomials

15. Systems of Linear Equations

16. Geometric Progressions & Series

17. Arithmetic Progressions

18. Permutation & Combinations

19. The Binomial Theorem

20. Mathematical Induction

21. Solutions

What's the best diet for overall health and weight management? How can we change our finances to retire earlier? How can we maximize our chances of finding our soul mate?

In The Calculus of Happiness, Oscar Fernandez shows us that math yields powerful insights into health, wealth, and love. Using only high-school-level math (precalculus with a dash of calculus), Fernandez guides us through several of the surprising results, including an easy rule of thumb for choosing foods that lower our risk for developing diabetes (and that help us lose weight too), simple "all-weather" investment portfolios with great returns, and math-backed strategies for achieving financial independence and searching for our soul mate. Moreover, the important formulas are linked to a dozen free online interactive calculators on the book’s website, allowing one to personalize the equations.

Fernandez uses everyday experiences—such as visiting a coffee shop—to provide context for his mathematical insights, making the math discussed more accessible, real-world, and relevant to our daily lives. Every chapter ends with a summary of essential lessons and takeaways, and for advanced math fans, Fernandez includes the mathematical derivations in the appendices.

A nutrition, personal finance, and relationship how-to guide all in one, The Calculus of Happiness invites you to discover how empowering mathematics can be.

The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several variables: the space of several variables and continuous functions, differentiation, multiple integrals, and line and surface integrals, concluding with a selection of related topics. Complete solutions to the problems appear at the end of the text.

But while the importance of the calculus and mathematical analysis ― the core of modern mathematics ― cannot be overemphasized, the value of this first comprehensive critical history of the calculus goes far beyond the subject matter. This book will fully counteract the impression of laymen, and of many mathematicians, that the great achievements of mathematics were formulated from the beginning in final form. It will give readers a sense of mathematics not as a technique, but as a habit of mind, and serve to bridge the gap between the sciences and the humanities. It will also make abundantly clear the modern understanding of mathematics by showing in detail how the concepts of the calculus gradually changed from the Greek view of the reality and immanence of mathematics to the revised concept of mathematical rigor developed by the great 19th century mathematicians, which held that any premises were valid so long as they were consistent with one another. It will make clear the ideas contributed by Zeno, Plato, Pythagoras, Eudoxus, the Arabic and Scholastic mathematicians, Newton, Leibnitz, Taylor, Descartes, Euler, Lagrange, Cantor, Weierstrass, and many others in the long passage from the Greek "method of exhaustion" and Zeno's paradoxes to the modern concept of the limit independent of sense experience; and illuminate not only the methods of mathematical discovery, but the foundations of mathematical thought as well.

"The main object of this book is to dispel the fear of mathematics," declares author W. W. Sawyer, adding that "Many people regard mathematicians as a race apart, possessed of almost supernatural powers. While this is very flattering for successful mathematicians, it is very bad for those who, for one reason or another, are attempting to learn the subject." Now retired, Sawyer won international renown for his innovative teaching methods, which he used at colleges in England and Scotland as well as Africa, New Zealand, and North America. His insights into the pleasures and practicalities of mathematics will appeal to readers of all backgrounds.

Want to "know it ALL" when it comes to pre-calculus? This book gives you the expert, one-on-one instruction you need, whether you're new to pre-calculus or you're looking to ramp up your skills. Providing easy-to-understand concepts and thoroughly explained exercises, math whiz Stan Gibilisco serves as your own private tutor--without the expense! His clear, friendly guidance helps you tackle the concepts and problems that confuse you the most and work through them at your own pace.

Train your brain with ease!

Pre-Calculus Know-It-ALL features:

Checkpoints to help you track your knowledge and skill level Problem/solution pairs and chapter-ending quizzes to reinforce learning Fully explained answers to all practice exercises A multiple-choice exam to prepare you for standardized tests "Extra Credit" and "Challenge" problems to stretch your mindStan's expert guidance gives you the know-how to:

Calculate distance in Cartesian two-and three-space Perform vector multiplication Work with cylindrical and spherical coordinates Understand relations and functions Learn the properties of conic sections Graph exponential, logarithmic, and trigonometric curves Define curves with parametric equations Work with sequences, series, and limits Take college entrance examinations with confidence And much more!Does the thought of calculus give you a coronary? You aren't alone. Thankfully, this new edition of Calculus Workbook For Dummies makes it infinitely easier. Focusing "beyond the classroom," it contains calculus exercises you can work on that will help to increase your confidence and improve your skills. This hands-on, friendly guide gives you hundreds of practice problems on limits, vectors, continuity, differentiation, integration, curve-sketching, conic sections, natural logarithms, and infinite series.

Calculus is a gateway and potential stumbling block for students interested in pursuing a career in math, science, engineering, finance, and technology. Calculus students, along with math students in nearly all disciplines, benefit greatly from opportunities to practice different types of problems—in the classroom and out. Calculus Workbook For Dummies takes you step-by-step through each concept, operation, and solution, explaining the "how" and "why" in plain English, rather than math-speak. Through relevant instruction and practical examples, you'll soon learn that real-life calculus isn't nearly the monster it's made out to be.

Master differentiation and integration Use the calculus microscope: limits Analyze common functions Score your highest in calculusComplete with tips for problem-solving and traps to avoid, Calculus Workbook For Dummies is your sure-fire weapon for conquering calculus!

The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

Review from the first edition:

"This book is intended for the student who has a good, but naïve, understanding of elementary calculus and now wishes to gain a thorough understanding of a few basic concepts in analysis.... The author has tried to write in an informal but precise style, stressing motivation and methods of proof, and ... has succeeded admirably."

—MATHEMATICAL REVIEWS

The principal aim of analysis of tensors is to investigate those relations which remain valid when we change from one coordinate system to another. This book on Tensors requires only a knowledge of elementary calculus, differential equations and classical mechanics as pre-requisites. It provides the readers with all the information about the tensors along with the derivation of all the tensorial relations/equations in a simple manner. The book also deals in detail with topics of importance to the study of special and general relativity and the geometry of differentiable manifolds with a crystal clear exposition. The concepts dealt within the book are well supported by a number of solved examples. A carefully selected set of unsolved problems is also given at the end of each chapter, and the answers and hints for the solution of these problems are given at the end of the book. The applications of tensors to the fields of differential geometry, relativity, cosmology and electromagnetism is another attraction of the present book.

This book is intended to serve as text for postgraduate students of mathematics, physics and engineering. It is ideally suited for both students and teachers who are engaged in research in General Theory of Relativity and Differential Geometry.

Calculus II is a prerequisite for many popular college majors, including pre-med, engineering, and physics. Calculus II For Dummies offers expert instruction, advice, and tips to help second semester calculus students get a handle on the subject and ace their exams.

It covers intermediate calculus topics in plain English, featuring in-depth coverage of integration, including substitution, integration techniques and when to use them, approximate integration, and improper integrals. This hands-on guide also covers sequences and series, with introductions to multivariable calculus, differential equations, and numerical analysis. Best of all, it includes practical exercises designed to simplify and enhance understanding of this complex subject.

Introduction to integration Indefinite integrals Intermediate Integration topics Infinite series Advanced topics Practice exercisesConfounded by curves? Perplexed by polynomials? This plain-English guide to Calculus II will set you straight!

Not to fear--Idiot's Guides: Calculus I is a curriculum-based companion book created with this audience in mind. This new edition continues the tradition of taking the sting out of calculus by adding more explanatory graphs and illustrations and doubling the number of practice problems! By the time readers are finished, they will have a solid understanding (maybe even a newfound appreciation) for this useful form of math. And with any luck, they may even be able to make sense of their textbooks and teachers.

This new edition is extensively revised and updated with a refocused layout. In addition to the inclusion of extra exercises, the quality and focus of the exercises in this book has improved, which will help motivate the reader. New features include a discussion of infinite products, and expanded sections on metric spaces, the Baire category theorem, multi-variable functions, and the Gamma function.

Reviews from the first edition:

"This is a dangerous book. Understanding Analysis is so well-written and the development of the theory so well-motivated that exposing students to it could well lead them to expect such excellence in all their textbooks. ... Understanding Analysis is perfectly titled; if your students read it that’s what’s going to happen. This terrific book will become the text of choice for the single-variable introductory analysis course; take a look at it next time you’re preparing that class."

-Steve Kennedy, The Mathematical Association of America, 2001

"Each chapter begins with a discussion section and ends with an epilogue. The discussion serves to motivate the content of the chapter while the epilogue points tantalisingly to more advanced topics. ... I wish I had written this book! The development of the subject follows the tried-and-true path, but the presentation is engaging and challenging. Abbott focuses attention immediately on the topics which make analysis fascinating ... and makes them accessible to an inexperienced audience."

-Scott Sciffer, The Australian Mathematical Society Gazette, 29:3, 2002

The reader who merely wishes to become familiar with the most basic concepts and methods of the calculus of variations need only study the first chapter. Students wishing a more extensive treatment, however, will find the first six chapters comprise a complete university-level course in the subject, including the theory of fields and sufficient conditions for weak and strong extrema. Chapter 7 considers the application of variational methods to the study of systems with infinite degrees of freedom, and Chapter 8 deals with direct methods in the calculus of variations. The problems following each chapter were made specially for this English-language edition, and many of them comment further on corresponding parts of the text. Two appendices and suggestions for supplementary reading round out the text.

Substantially revised and corrected by the translator, this inexpensive new edition will be welcomed by advanced undergraduate and graduate students of mathematics and physics.

The author first applies the necessary mathematical background, including sets, inequalities, absolute value, mathematical induction, and other "precalculus" material. Chapter Two begins the actual study of differential calculus with a discussion of the key concept of function, and a thorough treatment of derivatives and limits. In Chapter Three differentiation is used as a tool; among the topics covered here are velocity, continuous and differentiable functions, the indefinite integral, local extrema, and concrete optimization problems. Chapter Four treats integral calculus, employing the standard definition of the Riemann integral, and deals with the mean value theorem for integrals, the main techniques of integration, and improper integrals. Chapter Five offers a brief introduction to differential equations and their applications, including problems of growth, decay, and motion. The final chapter is devoted to the differential calculus of functions of several variables.

Numerous problems and answers, and a newly added section of "Supplementary Hints and Answers," enable the student to test his grasp of the material before going on. Concise and well written, this text is ideal as a primary text or as a refresher for anyone wishing to review the fundamentals of this crucial discipline.

Tensor Calculus contains eight chapters. The first four deal with the basic concepts of tensors, Riemannian spaces, Riemannian curvature, and spaces of constant curvature. The next three chapters are concerned with applications to classical dynamics, hydrodynamics, elasticity, electromagnetic radiation, and the theorems of Stokes and Green. In the final chapter, an introduction is given to non-Riemannian spaces including such subjects as affine, Weyl, and projective spaces. There are two appendixes which discuss the reduction of a quadratic form and multiple integration. At the conclusion of each chapter a summary of the most important formulas and a set of exercises are given. More exercises are scattered throughout the text. The special and general theory of relativity is briefly discussed where applicable.

Richard Courant's classic text Differential and Integral Calculus is an essential text for those preparing for a career in physics or applied math. Volume 1 introduces the foundational concepts of "function" and "limit", and offers detailed explanations that illustrate the "why" as well as the "how". Comprehensive coverage of the basics of integrals and differentials includes their applications as well as clearly-defined techniques and essential theorems. Multiple appendices provide supplementary explanation and author notes, as well as solutions and hints for all in-text problems.

The first part of this book covers simple differential calculus, with constants, variables, functions, increments, derivatives, differentiation, logarithms, curvature of curves, and similar topics. The second part covers fundamental ideas of integration (inspection, substitution, transformation, reduction) areas and volumes, mean value, successive and partial integration, double and triple integration. In all cases the author stresses practical aspects rather than theoretical, and builds upon such situations as might occur.

A 50-page section illustrates the application of calculus to specific problems of civil and nautical engineering, electricity, stress and strain, elasticity, industrial engineering, and similar fields. 756 questions answered. 566 problems to measure your knowledge and improvement; answers. 36 pages of useful constants, formulae for ready reference. Index.

The "lost notebook" contains considerable material on mock theta functions and so undoubtedly emanates from the last year of Ramanujan's life. It should be emphasized that the material on mock theta functions is perhaps Ramanujan's deepest work. Mathematicians are probably several decades away from a complete understanding of those functions. More than half of the material in the book is on q-series, including mock theta functions; the remaining part deals with theta function identities, modular equations, incomplete elliptic integrals of the first kind and other integrals of theta functions, Eisenstein series, particular values of theta functions, the Rogers-Ramanujan continued fraction, other q-continued fractions, other integrals, and parts of Hecke's theory of modular forms.

Like a great museum, The Calculus Gallery is filled with masterpieces, among which are Bernoulli's early attack upon the harmonic series (1689), Euler's brilliant approximation of pi (1779), Cauchy's classic proof of the fundamental theorem of calculus (1823), Weierstrass's mind-boggling counterexample (1872), and Baire's original "category theorem" (1899). Collectively, these selections document the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching--a story of genius triumphing over some of the toughest, most subtle problems imaginable.

Anyone who has studied and enjoyed calculus will discover in these pages the sheer excitement each mathematician must have felt when pushing into the unknown. In touring The Calculus Gallery, we can see how it all came to be.

Stumped trying to understand calculus? Calculus Demystified, Second Edition, will help you master this essential mathematical subject.

Written in a step-by-step format, this practical guide begins by covering the basics--number systems, coordinates, sets, and functions. You'll move on to limits, derivatives, integrals, and indeterminate forms. Transcendental functions, methods of integration, and applications of the integral are also covered. Clear examples, concise explanations, and worked problems make it easy to understand the material, and end-of-chapter quizzes and a final exam help reinforce key concepts.

It's a no-brainer! You'll get:

Applications of the derivative and the integral Rules of integration Coverage of improper integrals An explanation of calculus with logarithmic and exponential functions Details on calculation of work, averages, arc length, and surface areaSimple enough for a beginner, but challenging enough for an advanced student, Calculus Demystified, Second Edition, is one book you won't want to function without!

This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.

The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.

In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

"An odd and tantalizing book by a writer who takes immense pleasure in this great mathematical tool, and tries to create it in others."--New York Times Book Review

From the Trade Paperback edition.